Transcript Collision Attacks: Breaking Authentication in TLS, IKE and SSH

or: MD5 MUST DIE

http://sloth-attack.org

Karthikeyan Bhargavan Gaëtan Leurent

Agility vs. Downgrade Attacks

Crypto protocols and applications evolve

- SSL v3 → TLS 1.2
- DH-768 → Curve25519
- MD5 → SHA-256

Agility: graceful transition from old to new

• Negotiate best shared version, cipher, DH group

What can go wrong?

- We get lazy and forget to remove weak algorithms
- Downgrade attacks: POODLE, LOGJAM, **SLOTH**

Authenticated DH with Negotiation

What Transcript to Sign?

- Sign the full message trace
 - $-\operatorname{sign}(sk_{B}, \operatorname{hash}(m_{1} \mid m2))$
 - Example: TLS 1.3, SSH-2, TLS 1.2 client auth
- Sign your ephemerals, MAC the transcript
 sign(sk_B, hash(nonce_A | nonce_B | g | p | g^y))
 - Example: TLS 1.2 server auth
- Sign your own messages and MACed identity
 - $-\operatorname{sign}(sk_A, \operatorname{hash}(m_1 \mid \operatorname{mac}(k, A)))$
 - sign(sk_B, hash(m₂ | mac(k,B)))
 - Example: IKEv2 initiator, responder, EAP auth

Using Weak Hash Functions

- Sign the full transcript
 - $-\operatorname{sign}(sk_{B}, \operatorname{hash}(m_{1} \mid m2))$
 - Example: TLS 1.3, SSH-2, TLS 1.2 client auth
- How weak can the hash function be?
 - do we need collision resistance?
 - do we only need 2nd preimage resistance?
 - Is it still safe to use MD5, SHA-1 in TLS, IKE, SSH?
 - *Disagreement*: cryptographers vs. practitioners (see Schneier vs. Hoffman, RFC4270)

SLOTH: Transcript Collision Attacks

Computing a Transcript Collision

 $hash(m_1 \mid m'_2) = hash(m'_1 \mid m_2)$

- We need to compute a collision, *not a preimage*
 - Attacker controls parts of both transcripts
 - If we know the black bits, can we compute the red bits?
 - This is usually called a **generic collision**
- If we're lucky, we can set up a **shortcut** collision
 - **Common-prefix**: collision after a shared transcript prefix
 - Chosen-prefix: collision after attacker-controlled prefixes

Primer on Hash Collision Complexity

- MD5: known attack complexities
 - MD5 second preimage 2¹²⁸ hashes
 MD5 generic collision: 2⁶⁴ hashes (birthday)
 - **MD5** chosen-prefix collision: 2³⁹ hashes (1 hour)
 - MD5 common-prefix collision: 2¹⁶ hashes (seconds)

2¹⁶⁰ hashes

2⁸⁰ hashes

- SHA1: estimated attack complexities
 - SHA1 second preimage
 - SHA1 generic collision: (birthday)

Composite Hash Constructions

- When used as transcript hash functions many constructions are not collision resistant
 - MD5(x) | SHA1(x)
 not much better than SHA1
 - HMAC-MD5(k,x)
 not much better than MD5
 - HMAC-SHA256(k,MD5(x)) not much better than MD5
 - Truncated HMAC-SHA256(k,x) to N bits not much better than a N bit hash function

Computing Transcript Collisions MitM Α B hash hash len₁' len₁ m_1 m_1 g^{x'} g^x params'_A params_A len₂' len₂ m_2' m_2 gy' g^y params'_B params_R

SLOTH: Attacking TLS 1.2 Client Auth

- TLS 1.2 upgraded hash functions used in TLS
 - SHA-256 for all handshake constructions
 - New signature algorithms extension: SHA-256/384/512
- TLS 1.2 added support for MD5-based signatures!
 - Even if the client and server prefer RSA-SHA256, the connection can be downgraded to RSA-MD5!
- Transcript collisions break TLS 1.2 client signatures
 - Chosen prefix collision attack using flexible formats
 - Demo: Takes 1 hour/connection on a 48-core workstation
 - *Not very practical*: connection must be live during attack

SLOTH: Attacking TLS Server Auth

- TLS 1.2 server signatures are harder to break
 - Irony: the weakness that enables Logjam blocks SLOTH
 - Needs 2^x prior connections + 2^{128-x} hashes/connection
 - Not practical for academics, as far as we know
- TLS 1.3 server signatures is potentially vulnerable
 New: MD5, SHA-1 sigs now explicitly forbidden in TLS 1.3

Other SLOTH Vulnerabilities

- Reduced security for TLS 1.*, IKEv1, IKEv2, SSH
 - Impersonation attack on TLS channel bindings
 - Exploit downgrades + transcript collisions
 - These are protocol flaws, not implementation bugs
 - Main mitigation is to disable weak hash functions

Protocol	Property	Mechanism	Attack	Collision Type	Precomp.	Work/conn.	Preimage	Wall-clock time
TLS 1.2 TLS 1.3 TLS 1.0-1.2 TLS 1.2 TLS 1.0-1.1	Client Auth Server Auth Channel Binding Server Auth Handshake Integrity	RSA-MD5 RSA-MD5 HMAC (96 bits) RSA-MD5 MD5 SHA-1	Impersonation Impersonation Impersonation Impersonation Downgrade	Chosen Prefix Chosen Prefix Generic Generic Chosen Prefix	2^X conn.	$2^{39} \\ 2^{39} \\ 2^{48} \\ 2^{128-X} \\ 2^{77}$	$2^{128} \\ 2^{128} \\ 2^{96} \\ 2^{128} \\ 2^{160}$	48 core hours48 core hours80 GPU days
IKE v1 IKE v2 SSH-2	Initiator Auth Initiator Auth Exchange Integrity	HMAC-MD5 RSA-SHA-1 SHA-1	Impersonation Impersonation Downgrade	Generic Chosen Prefix Chosen Prefix	2 ⁷⁷	$2^{65} \\ 0 \\ 2^{77}$	$2^{128} \\ 2^{160} \\ 2^{160}$	

Final Thoughts

- Legacy crypto is strangely hard to get rid of, but we have to keep trying to kill broken primitives (MD5 MUST DIE)
- Key exchanges in Internet protocols *do* rely on collision resistance, question anyone who tells you otherwise!
- Future: new downgrade resilient protocols, collision-resistant authentication mechanisms
- More details, papers, demos are at:

http://sloth-attack.org