Derek Leung (MIT CSAIL), Adam Suhl (MIT CSAIL), Yossi Gilad (MIT CSAIL), Nickolai Zeldovich (MIT CSAIL)

Decentralized cryptocurrencies rely on participants to keep track of the state of the system in order to verify new transactions. As the number of users and transactions grows, this requirement becomes a significant burden, requiring users to download, verify, and store a large amount of data to participate.

Vault is a new cryptocurrency design based on Algorand that minimizes these storage and bootstrapping costs for participants. Vault’s design is based on Algorand’s proof-of-stake consensus protocol and uses several techniques to achieve its goals. First, Vault decouples the storage of recent transactions from the storage of account balances, which enables Vault to delete old account state. Second, Vault allows sharding state across participants in a way that preserves strong security guarantees. Finally, Vault introduces the notion of stamping certificates, which allow a new client to catch up securely and efficiently in a proof-of-stake system without having to verify every single block.

Experiments with a prototype implementation of Vault’s data structures show that Vault’s design reduces the bandwidth cost of joining the network as a full client by 99.7% compared to Bitcoin and 90.5% compared to Ethereum when downloading a ledger containing 500 million transactions.

View More Papers

ML-Leaks: Model and Data Independent Membership Inference Attacks and...

Ahmed Salem (CISPA Helmholtz Center for Information Security), Yang Zhang (CISPA Helmholtz Center for Information Security), Mathias Humbert (Swiss Data Science Center, ETH Zurich/EPFL), Pascal Berrang (CISPA Helmholtz Center for Information Security), Mario Fritz (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security)

Read More

Tranco: A Research-Oriented Top Sites Ranking Hardened Against Manipulation

Victor Le Pochat (imec-DistriNet, KU Leuven), Tom Van Goethem (imec-DistriNet, KU Leuven), Samaneh Tajalizadehkhoob (Delft University of Technology), Maciej Korczyński (Grenoble Alps University), Wouter Joosen (imec-DistriNet, KU Leuven)

Read More

Component-Based Formal Analysis of 5G-AKA: Channel Assumptions and Session...

Cas Cremers (CISPA Helmholtz Center for Information Security), Martin Dehnel-Wild (University of Oxford)

Read More

YODA: Enabling computationally intensive contracts on blockchains with Byzantine...

Sourav Das (Department of Computer Science and Engineering, Indian Institute of Technology Delhi), Vinay Joseph Ribeiro (Department of Computer Science and Engineering, Indian Institute of Technology Delhi), Abhijeet Anand (Department of Computer Science and Engineering, Indian Institute of Technology Delhi)

Read More