Daimeng Wang (University of California Riverside), Ajaya Neupane (University of California Riverside), Zhiyun Qian (University of California Riverside), Nael Abu-Ghazaleh (University of California Riverside), Srikanth V. Krishnamurthy (University of California Riverside), Edward J. M. Colbert (Virginia Tech), Paul Yu (U.S. Army Research Lab (ARL))

Operating systems use shared memory to improve performance. However, as shown in recent studies, attackers can exploit CPU cache side-channels associated with shared memory to extract sensitive information. The attacks that were previously attempted typically only detect the presence of a certain operation and require significant manual analysis to identify and evaluate their effectiveness. Moreover, very few of them target graphics libraries which are commonly used, but difficult to attack. In this paper, we consider the execution time of shared libraries as the side-channel, and showcase a completely automated technique to discover and select exploitable side-channels on shared graphics libraries. In essence, we first collect the cache lines accessed by a victim process during different key presses offline, and then use machine learning to infer the best cache lines (e.g., easily measurable, robust to noise, high information leakage) for a flush and reload attack. We are able to discover effective strategies to classify what keys have been pressed. Using this approach, we not only preclude the need for manual analyses of code and traces — the automated system discovered many previously unknown side-channels of the type we are interested in, but also achieve high precision in terms of inferring the sensitive information entered on desktop and Android platforms. We show that our approach infers the passwords with lowercase letters and numbers 10,000 - 1,000,000 times faster than random guessing. For a large fraction of PINs consisting of 4 to 6 digits, we are able to infer them within 20 and 80 guesses respectively. Finally, we suggest ways to mitigate these attacks.

View More Papers

Measurement and Analysis of Hajime, a Peer-to-peer IoT Botnet

Stephen Herwig (University of Maryland), Katura Harvey (University of Maryland, Max Planck Institute for Software Systems (MPI-SWS)), George Hughey (University of Maryland), Richard Roberts (University of Maryland, Max Planck Institute for Software Systems (MPI-SWS)), Dave Levin (University of Maryland)

Read More

A Systematic Framework to Generate Invariants for Anomaly Detection...

Cheng Feng (Imperial College London & Siemens Corporate Technology), Venkata Reddy Palleti (Singapore University of Technology and Design), Aditya Mathur (Singapore University of Technology and Design), Deeph Chana (Imperial College London)

Read More

Geo-locating Drivers: A Study of Sensitive Data Leakage in...

Qingchuan Zhao (The Ohio State University), Chaoshun Zuo (The Ohio State University), Giancarlo Pellegrino (CISPA, Saarland University; Stanford University), Zhiqiang Lin (The Ohio State University)

Read More

TIMBER-V: Tag-Isolated Memory Bringing Fine-grained Enclaves to RISC-V

Samuel Weiser (Graz University of Technology), Mario Werner (Graz University of Technology), Ferdinand Brasser (Technische Universität Darmstadt), Maja Malenko (Graz University of Technology), Stefan Mangard (Graz University of Technology), Ahmad-Reza Sadeghi (Technische Universität Darmstadt)

Read More