Runqing Yang (Zhejiang University), Shiqing Ma (Rutgers University), Haitao Xu (Arizona State University), Xiangyu Zhang (Purdue University), Yan Chen (Northwestern University)

Existing attack investigation solutions for GUI applications suffer from a few limitations such as inaccuracy (because of the dependence explosion problem), requiring instrumentation, and providing very low visibility. Such limitations have hindered their widespread and practical deployment. In this paper, we present UIScope, a novel accurate, instrumentation-free, and visible attack investigation system for GUI applications. The core idea of UIScope is to perform causality analysis on both UI elements/events which represent users' perspective and low-level system events which provide detailed information of what happens under the hood, and then correlate system events with UI events to provide high accuracy and visibility. Long running processes are partitioned to individual UI transitions, to which low-level system events are attributed, making the results accurate. The produced graphs contain (causally related) UI elements with which users are very familiar, making them easily accessible. We deployed UIScope on 7 machines for a week, and also utilized UIScope to conduct an investigation of 6 real-world attacks. Our evaluation shows that compared to existing works, UIScope introduces negligible overhead (less than 1% runtime overhead and 3.05 MB event logs per hour on average) while UIScope can precisely identify attack provenance while offering users thorough visibility into the attack context. 

View More Papers

Practical Traffic Analysis Attacks on Secure Messaging Applications

Alireza Bahramali (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst), Ramin Soltani (University of Massachusetts Amherst), Dennis Goeckel (University of Massachusetts Amherst), Don Towsley (University of Massachusetts Amherst)

Read More

BaseSpec: Comparative Analysis of Baseband Software and Cellular Specifications...

Eunsoo Kim (KAIST), Dongkwan Kim (KAIST), CheolJun Park (KAIST), Insu Yun (KAIST), Yongdae Kim (KAIST)

Read More

Data Poisoning Attacks to Deep Learning Based Recommender Systems

Hai Huang (Tsinghua University), Jiaming Mu (Tsinghua University), Neil Zhenqiang Gong (Duke University), Qi Li (Tsinghua University), Bin Liu (West Virginia University), Mingwei Xu (Tsinghua University)

Read More

Impact Evaluation of Falsified Data Attacks on Connected Vehicle...

Shihong Huang (University of Michigan, Ann Arbor), Yiheng Feng (Purdue University), Wai Wong (University of Michigan, Ann Arbor), Qi Alfred Chen (UC Irvine), Z. Morley Mao and Henry X. Liu (University of Michigan, Ann Arbor) Best Paper Award Runner-up ($200 cash prize)!

Read More