Zelun Kong (University of Texas at Dallas), Minkyung Park (University of Texas at Dallas), Le Guan (University of Georgia), Ning Zhang (Washington University in St. Louis), Chung Hwan Kim (University of Texas at Dallas)

As reliance on embedded systems grows in critical domains such as healthcare, industrial automation, and unmanned vehicles, securing the data on micro-controller units (MCUs) becomes increasingly crucial. These systems face significant challenges related to computational power and energy constraints, complicating efforts to maintain the confidentiality and integrity of sensitive data. Previous methods have utilized compartmentalization techniques to protect this sensitive data, yet they remain vulnerable to breaches by strong adversaries exploiting privileged software.

In this paper, we introduce TZ-DATASHIELD, a novel LLVM compiler tool that enhances ARM TrustZone with sensitive data flow (SDF) compartmentalization, offering robust protection against strong adversaries in MCU-based systems. We address three primary challenges: the limitations of existing compartment units, inadequate isolation within the Trusted Execution Environment (TEE), and the exposure of shared data to potential attacks. TZ-DATASHIELD addresses these challenges by implementing a fine-grained compartmentalization approach that focuses on sensitive data flow, ensuring data confidentiality and integrity, and developing a novel intra-TEE isolation mechanism that validates compartment access to TEE resources at runtime. Our prototype enables firmware developers to annotate source code to generate TrustZone-ready firmware images automatically. Our evaluation using real-world MCU applications demonstrates that TZ-DATASHIELD achieves up to 80.8% compartment memory and 88.6% ROP gadget reductions within the TEE address space. It incurs an average runtime overhead of 14.7% with CFI and DFI enforcement, and 7.6% without these measures.

View More Papers

Balancing Privacy and Data Utilization: A Comparative Vignette Study...

Leona Lassak (Ruhr University Bochum), Hanna Püschel (TU Dortmund University), Oliver D. Reithmaier (Leibniz University Hannover), Tobias Gostomzyk (TU Dortmund University), Markus Dürmuth (Leibniz University Hannover)

Read More

Evaluating Machine Learning-Based IoT Device Identification Models for Security...

Eman Maali (Imperial College London), Omar Alrawi (Georgia Institute of Technology), Julie McCann (Imperial College London)

Read More

PhantomLiDAR: Cross-modality Signal Injection Attacks against LiDAR

Zizhi Jin (Zhejiang University), Qinhong Jiang (Zhejiang University), Xuancun Lu (Zhejiang University), Chen Yan (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More

Statically Discover Cross-Entry Use-After-Free Vulnerabilities in the Linux Kernel

Hang Zhang (Indiana University Bloomington), Jangha Kim (The Affiliated Institute of ETRI, ROK), Chuhong Yuan (Georgia Institute of Technology), Zhiyun Qian (University of California, Riverside), Taesoo Kim (Georgia Institute of Technology)

Read More