Zhuo Cheng (Carnegie Mellon University), Maria Apostolaki (Princeton University), Zaoxing Liu (University of Maryland), Vyas Sekar (Carnegie Mellon University)

Cloud providers deploy telemetry tools in software to perform end-host network analytics. Recent efforts show that sketches, a kind of approximate data structure, are a promising basis for software-based telemetry, as they provide high fidelity for many statistics with a low resource footprint. However, an attacker can compromise sketch-based telemetry results via software vulnerabilities. Consequently, they can nullify the use of telemetry; e.g., avoiding attack detection or inducing accounting discrepancies. In this paper, we formally define the requirements for trustworthy sketch-based telemetry and show that prior work cannot meet those due to the sketch’s probabilistic nature and performance requirements. We present the design and implementation TRUSTSKETCH, a general framework for trustworthy sketch telemetry that can support a wide spectrum of sketching algorithms. We show that TRUSTSKETCH is able to detect a wide range of attacks on sketch-based telemetry in a timely fashion while incurring only minimal overhead.

View More Papers

SLMIA-SR: Speaker-Level Membership Inference Attacks against Speaker Recognition Systems

Guangke Chen (ShanghaiTech University), Yedi Zhang (National University of Singapore), Fu Song (Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences)

Read More

VETEOS: Statically Vetting EOSIO Contracts for the “Groundhog Day”...

Levi Taiji Li (University of Utah), Ningyu He (Peking University), Haoyu Wang (Huazhong University of Science and Technology), Mu Zhang (University of Utah)

Read More

Inaudible Adversarial Perturbation: Manipulating the Recognition of User Speech...

Xinfeng Li (Zhejiang University), Chen Yan (Zhejiang University), Xuancun Lu (Zhejiang University), Zihan Zeng (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More