Kai Jansen (Ruhr University Bochum), Liang Niu (New York University), Nian Xue (New York University), Ivan Martinovic (University of Oxford), Christina Pöpper (New York University Abu Dhabi)

Automatic Dependent Surveillance-Broadcast (ADS-B) has been widely adopted as the de facto standard for air-traffic surveillance. Aviation regulations require all aircraft to actively broadcast status reports containing identity, position, and movement information. However, the lack of security measures exposes ADS-B to cyberattacks by technically capable adversaries with the purpose of interfering with air safety. In this paper, we develop a non-invasive trust evaluation system to detect attacks on ADS-B-based air-traffic surveillance using real-world flight data as collected by an infrastructure of ground-based sensors. Taking advantage of the redundancy of geographically distributed sensors in a crowdsourcing manner, we implement verification tests to pursue security by wireless witnessing. At the core of our proposal is the combination of verification checks and Machine Learning (ML)-aided classification of reception patterns—such that user-collected data cross-validates the data provided by other users. Our system is non-invasive in the sense that it neither requires modifications on the deployed hardware nor the software protocols and only utilizes already available data. We demonstrate that our system can successfully detect GPS spoofing, ADS-B spoofing, and even Sybil attacks for airspaces observed by at least three benign sensors. We are further able to distinguish the type of attack, identify affected sensors, and tune our system to dynamically adapt to changing air-traffic conditions.

View More Papers

Exploring The Design Space of Sharing and Privacy Mechanisms...

Abdulmajeed Alqhatani, Heather R. Lipford (University of North Carolina at Charlotte)

Read More

Is Your Firmware Real or Re-Hosted? A case study...

Abraham A. Clements, Logan Carpenter, William A. Moeglein (Sandia National Laboratories), Christopher Wright (Purdue University)

Read More

Low-risk Privacy-preserving Electric Vehicle Charging with Payments

Andreas Unterweger, Fabian Knirsch, Clemens Brunner and Dominik Engel (Center for Secure Energy Informatics, Salzburg University of Applied Sciences, Puch bei Hallein, Austria)

Read More

Oblivious DNS over HTTPS (ODoH): A Practical Privacy Enhancement...

Sudheesh Singanamalla*†, Suphanat Chunhapanya*, Jonathan Hoyland*, Marek Vavruša*, Tanya Verma*, Peter Wu*, Marwan Fayed*, Kurtis Heimerl†, Nick Sullivan*, Christopher Wood* (*Cloudflare Inc. †University of Washington)

Read More