Simon Langowski (Massachusetts Institute of Technology), Sacha Servan-Schreiber (Massachusetts Institute of Technology), Srinivas Devadas (Massachusetts Institute of Technology)

Trellis is a mix-net based anonymous broadcast
system with cryptographic security guarantees. Trellis can be used
to anonymously publish documents or communicate with other
users, all while assuming full network surveillance. In Trellis,
users send messages through a set of servers in successive rounds.
The servers mix and post the messages to a public bulletin board,
hiding which users sent which messages.

Trellis hides all network-level metadata, remains robust to
changing network conditions, guarantees availability to honest
users, and scales with the number of mix servers. Trellis provides three to five orders of magnitude faster performance and
better network robustness compared to Atom, the state-of-the-art
anonymous broadcast system with a similar threat model.
In achieving these guarantees, Trellis contributes: (1) a
simpler theoretical mixing analysis for a routing mix network
constructed with a fraction of malicious servers, (2) anonymous
routing tokens for verifiable random paths, and (3) lightweight
blame protocols built on top of onion routing to identify and
eliminate malicious parties.

We implement and evaluate Trellis in a networked deployment. With 64 servers located across four geographic regions,
Trellis achieves a throughput of 220 bits per second with 100,000
users. With 128 servers, Trellis achieves a throughput of 320
bits per second. Trellis’s throughput is only 100 to 1000× slower
compared to Tor (which has 6,000 servers and 2M daily users)
and is therefore potentially deployable at a smaller “enterprise”
scale. Our implementation is open-source.

View More Papers

WIP: Augmenting Vehicle Safety With Passive BLE

Noah T. Curran (University of Michigan), Kang G. Shin (University of Michigan), William Hass (Lear Corporation), Lars Wolleschensky (Lear Corporation), Rekha Singoria (Lear Corporation), Isaac Snellgrove (Lear Corporation), Ran Tao (Lear Corporation)

Read More

podft: On Accelerating Dynamic Taint Analysis with Precise Path...

Zhiyou Tian (Xidian University), Cong Sun (Xidian University), Dongrui Zeng (Palo Alto Networks), Gang Tan (Pennsylvania State University)

Read More

Tag of the Dead: How Terminated SaaS Tags Become...

Takahito Sakamoto, Takuya Murozono (DataSign Inc)

Read More

PPA: Preference Profiling Attack Against Federated Learning

Chunyi Zhou (Nanjing University of Science and Technology), Yansong Gao (Nanjing University of Science and Technology), Anmin Fu (Nanjing University of Science and Technology), Kai Chen (Chinese Academy of Science), Zhiyang Dai (Nanjing University of Science and Technology), Zhi Zhang (CSIRO's Data61), Minhui Xue (CSIRO's Data61), Yuqing Zhang (University of Chinese Academy of Science)

Read More