Simon Langowski (Massachusetts Institute of Technology), Sacha Servan-Schreiber (Massachusetts Institute of Technology), Srinivas Devadas (Massachusetts Institute of Technology)

Trellis is a mix-net based anonymous broadcast system with cryptographic security guarantees. Trellis can be used to anonymously publish documents or communicate with other users, all while assuming full network surveillance. In Trellis, users send messages through a set of servers in successive rounds. The servers mix and post the messages to a public bulletin board, hiding which users sent which messages.

Trellis hides all network-level metadata, remains robust to changing network conditions, guarantees availability to honest users, and scales with the number of mix servers. Trellis provides three to five orders of magnitude faster performance and better network robustness compared to Atom, the state-of-the-art anonymous broadcast system with a similar threat model. In achieving these guarantees, Trellis contributes: (1) a simpler theoretical mixing analysis for a routing mix network constructed with a fraction of malicious servers, (2) anonymous routing tokens for verifiable random paths, and (3) lightweight blame protocols built on top of onion routing to identify and eliminate malicious parties.

We implement and evaluate Trellis in a networked deployment. With 64 servers located across four geographic regions, Trellis achieves a throughput of 220 bits per second with 100,000 users. With 128 servers, Trellis achieves a throughput of 320 bits per second. Trellis’s throughput is only 100 to 1000× slower compared to Tor (which has 6,000 servers and 2M daily users) and is therefore potentially deployable at a smaller “enterprise” scale. Our implementation is open-source.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 66 ) ) ) [post__not_in] => Array ( [0] => 13160 ) )

RCABench: Open Benchmarking Platform for Root Cause Analysis

Keisuke Nishimura, Yuichi Sugiyama, Yuki Koike, Masaya Motoda, Tomoya Kitagawa, Toshiki Takatera, Yuma Kurogome (Ricerca Security, Inc.)

Read More

Navigating Murky Waters: Automated Browser Feature Testing for Uncovering...

Mir Masood Ali (University of Illinois Chicago), Binoy Chitale (Stony Brook University), Mohammad Ghasemisharif (University of Illinois Chicago), Chris Kanich (University of Illinois Chicago), Nick Nikiforakis (Stony Brook University), Jason Polakis (University of Illinois Chicago)

Read More

Are some prices more equal than others? Evaluating store-based...

Hugo Jonker (Open University Netherlands), Stefan Karsch (TH Koln), Benjamin Krumnow (TH Koln), Godfried Meesters (Open University Netherlands)

Read More

DiffCSP: Finding Browser Bugs in Content Security Policy Enforcement...

Seongil Wi (KAIST), Trung Tin Nguyen (CISPA Helmholtz Center for Information Security, Saarland University), Jihwan Kim (KAIST), Ben Stock (CISPA Helmholtz Center for Information Security), Sooel Son (KAIST)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)