Xiaoyuan Wu (Carnegie Mellon University), Lydia Hu (Carnegie Mellon University), Eric Zeng (Carnegie Mellon University), Hana Habib (Carnegie Mellon University), Lujo Bauer (Carnegie Mellon University)

Apple's App Privacy Report (``privacy report''), released in 2021, aims to
inform iOS users about apps' access to their data and sensors (e.g., contacts,
camera) and, unlike other privacy dashboards, what domains are contacted by apps and websites. To evaluate the
effectiveness of the privacy report, we conducted semi-structured interviews
(textit{n} = 20) to examine users' reactions to the information, their understanding of relevant privacy
implications, and how they might change
their behavior to address privacy concerns. Participants easily understood which
apps accessed data and sensors at certain times on their phones, and knew how to
remove an app's permissions in case of unexpected access. In contrast,
participants had difficulty understanding apps' and websites' network
activities. They were confused about how and why network activities occurred,
overwhelmed by the number of domains their apps contacted, and uncertain about
what remedial actions they could take against potential privacy threats. While
the privacy report and similar tools can increase transparency by presenting
users with details about how their data is handled, we recommend providing more
interpretation or aggregation of technical details, such as the purpose of
contacting domains, to help users make informed decisions.

View More Papers

ICSQuartz: Scan Cycle-Aware and Vendor-Agnostic Fuzzing for Industrial Control...

Corban Villa (New York University Abu Dhabi), Constantine Doumanidis (New York University Abu Dhabi), Hithem Lamri (New York University Abu Dhabi), Prashant Hari Narayan Rajput (InterSystems), Michail Maniatakos (New York University Abu Dhabi)

Read More

Evaluating the Strength and Availability of Multilingual Passphrase Authentication

Chi-en Amy Tai (University of Waterloo), Urs Hengartner (University of Waterloo), Alexander Wong (University of Waterloo)

Read More

LADDER: Multi-Objective Backdoor Attack via Evolutionary Algorithm

Dazhuang Liu (Delft University of Technology), Yanqi Qiao (Delft University of Technology), Rui Wang (Delft University of Technology), Kaitai Liang (Delft University of Technology), Georgios Smaragdakis (Delft University of Technology)

Read More

Eclipse Attacks on Monero's Peer-to-Peer Network

Ruisheng Shi (Beijing University of Posts and Telecommunications), Zhiyuan Peng (Beijing University of Posts and Telecommunications), Lina Lan (Beijing University of Posts and Telecommunications), Yulian Ge (Beijing University of Posts and Telecommunications), Peng Liu (Penn State University), Qin Wang (CSIRO Data61), Juan Wang (Wuhan University)

Read More