Xiaoyuan Wu (Carnegie Mellon University), Lydia Hu (Carnegie Mellon University), Eric Zeng (Carnegie Mellon University), Hana Habib (Carnegie Mellon University), Lujo Bauer (Carnegie Mellon University)

Apple's App Privacy Report (``privacy report''), released in 2021, aims to
inform iOS users about apps' access to their data and sensors (e.g., contacts,
camera) and, unlike other privacy dashboards, what domains are contacted by apps and websites. To evaluate the
effectiveness of the privacy report, we conducted semi-structured interviews
(textit{n} = 20) to examine users' reactions to the information, their understanding of relevant privacy
implications, and how they might change
their behavior to address privacy concerns. Participants easily understood which
apps accessed data and sensors at certain times on their phones, and knew how to
remove an app's permissions in case of unexpected access. In contrast,
participants had difficulty understanding apps' and websites' network
activities. They were confused about how and why network activities occurred,
overwhelmed by the number of domains their apps contacted, and uncertain about
what remedial actions they could take against potential privacy threats. While
the privacy report and similar tools can increase transparency by presenting
users with details about how their data is handled, we recommend providing more
interpretation or aggregation of technical details, such as the purpose of
contacting domains, to help users make informed decisions.

View More Papers

Automated Mass Malware Factory: The Convergence of Piggybacking and...

Heng Li (Huazhong University of Science and Technology), Zhiyuan Yao (Huazhong University of Science and Technology), Bang Wu (Huazhong University of Science and Technology), Cuiying Gao (Huazhong University of Science and Technology), Teng Xu (Huazhong University of Science and Technology), Wei Yuan (Huazhong University of Science and Technology), Xiapu Luo (The Hong Kong Polytechnic University)

Read More

DShield: Defending against Backdoor Attacks on Graph Neural Networks...

Hao Yu (National University of Defense Technology), Chuan Ma (Chongqing University), Xinhang Wan (National University of Defense Technology), Jun Wang (National University of Defense Technology), Tao Xiang (Chongqing University), Meng Shen (Beijing Institute of Technology, Beijing, China), Xinwang Liu (National University of Defense Technology)

Read More

LLMPirate: LLMs for Black-box Hardware IP Piracy

Vasudev Gohil (Texas A&M University), Matthew DeLorenzo (Texas A&M University), Veera Vishwa Achuta Sai Venkat Nallam (Texas A&M University), Joey See (Texas A&M University), Jeyavijayan Rajendran (Texas A&M University)

Read More

Cross-Origin Web Attacks via HTTP/2 Server Push and Signed...

Pinji Chen (Tsinghua University), Jianjun Chen (Tsinghua University & Zhongguancun Laboratory), Mingming Zhang (Zhongguancun Laboratory), Qi Wang (Tsinghua University), Yiming Zhang (Tsinghua University), Mingwei Xu (Tsinghua University), Haixin Duan (Tsinghua University)

Read More