Yang Zhang (CISPA Helmholtz Center for Information Security), Mathias Humbert (armasuisse Science and Technology), Bartlomiej Surma (CISPA Helmholtz Center for Information Security), Praveen Manoharan (CISPA Helmholtz Center for Information Security), Jilles Vreeken (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security)

Social graphs derived from online social interactions contain a wealth of information that is nowadays extensively used by both industry and academia. However, as social graphs contain sensitive information, they need to be properly anonymized before release. Most of the existing graph anonymization mechanisms rely on the perturbation of the original graph’s edge set. In this paper, we identify a fundamental weakness of these mechanisms: They neglect the strong structural proximity between friends in social graphs, thus add implausible fake edges for anonymization.
To exploit this weakness, we first propose a metric to quantify an edge’s plausibility by relying on graph embedding. Extensive experiments on three real-life social network datasets demonstrate that our plausibility metric can very effectively differentiate fake edges from original edges with AUC values above 0.95 in most of the cases. We then rely on a Gaussian mixture model to automatically derive the threshold on the edge plausibility values to determine whether an edge is fake, which enables us to recover to a large extent the original graph from the anonymized graph. Then, we demonstrate that our graph recovery attack jeopardizes the privacy guarantees provided by the considered graph anonymization mechanisms.
To mitigate this vulnerability, we propose a method to generate fake yet plausible edges given the graph structure and incorporate it into the existing anonymization mechanisms. Our evaluation demonstrates that the enhanced mechanisms decrease the chances of graph recovery, reduce the success of graph de-anonymization (up to 30%), and provide even better utility than the existing anonymization mechanisms.

View More Papers

MACAO: A Maliciously-Secure and Client-Efficient Active ORAM Framework

Thang Hoang (University of South Florida), Jorge Guajardo (Robert Bosch Research and Technology Center), Attila Yavuz (University of South Florida)

Read More

Carnus: Exploring the Privacy Threats of Browser Extension Fingerprinting

Soroush Karami (University of Illinois at Chicago), Panagiotis Ilia (University of Illinois at Chicago), Konstantinos Solomos (University of Illinois at Chicago), Jason Polakis (University of Illinois at Chicago)

Read More

Compliance Cautions: Investigating Security Issues Associated with U.S. Digital-Security...

Rock Stevens (University of Maryland), Josiah Dykstra (Independent Security Researcher), Wendy Knox Everette (Leviathan Security Group), James Chapman (Independent Security Researcher), Garrett Bladow (Dragos), Alexander Farmer (Independent Security Researcher), Kevin Halliday (University of Maryland), Michelle L. Mazurek (University of Maryland)

Read More

Learning-based Practical Smartphone Eavesdropping with Built-in Accelerometer

Zhongjie Ba (Zhejiang University and McGill University), Tianhang Zheng (University of Toronto), Xinyu Zhang (Zhejiang University), Zhan Qin (Zhejiang University), Baochun Li (University of Toronto), Xue Liu (McGill University), Kui Ren (Zhejiang University)

Read More