Beliz Kaleli (Boston University), Brian Kondracki (Stony Brook University), Manuel Egele (Boston University), Nick Nikiforakis (Stony Brook University), Gianluca Stringhini (Boston University)

To make their services more user friendly, online social-media platforms automatically identify text that corresponds to URLs and render it as clickable links.

In this paper, we show that the techniques used by such services to recognize URLs are often too permissive and can result in unintended URLs being displayed in social network messages. Among others, we show that popular platforms (such as Twitter) will render text as a clickable URL if a user forgets a space after a full stop as the end of a sentence, and the first word of the next sentence happens to be a valid Top Level Domain. Attackers can take advantage of these unintended URLs by registering the corresponding domains and exposing millions of Twitter users to arbitrary malicious content. To characterize the threat that unintended URLs pose to social-media users, we perform a large-scale study of unintended URLs in tweets over a period of 7 months. By designing a classifier capable of differentiating between intended and unintended URLs posted in tweets, we find more than 26K unintended URLs posted by accounts with tens of millions of followers. As part of our study, we also register 45 unintended domains and quantify the traffic that attackers can get by merely registering the right domains at the right time. Finally, due to the severity of our findings, we propose a lightweight browser extension which can, on the fly, analyze the tweets that users compose and alert them of potentially unintended URLs and raise a warning, allowing users to fix their mistake before the tweet is posted.

View More Papers

Is Your Firmware Real or Re-Hosted? A case study...

Abraham A. Clements, Logan Carpenter, William A. Moeglein (Sandia National Laboratories), Christopher Wright (Purdue University)

Read More

Bitcontracts: Supporting Smart Contracts in Legacy Blockchains

Karl Wüst (ETH Zurich), Loris Diana (ETH Zurich), Kari Kostiainen (ETH Zurich), Ghassan Karame (NEC Labs), Sinisa Matetic (ETH Zurich), Srdjan Capkun (ETH Zurich)

Read More

NetPlier: Probabilistic Network Protocol Reverse Engineering from Message Traces

Yapeng Ye (Purdue University), Zhuo Zhang (Purdue University), Fei Wang (Purdue University), Xiangyu Zhang (Purdue University), Dongyan Xu (Purdue University)

Read More