Martin Unterguggenberger (Graz University of Technology), Lukas Lamster (Graz University of Technology), David Schrammel (Graz University of Technology), Martin Schwarzl (Cloudflare, Inc.), Stefan Mangard (Graz University of Technology)

Efficient cloud computing relies on in-process isolation to optimize performance by running workloads within a single process. Without heavy-weight process isolation, memory safety errors pose a significant security threat by allowing an adversary to extract or corrupt the private data of other co-located tenants. Existing in-process isolation mechanisms are not suitable for modern cloud requirements, e.g., MPK’s 16 protection domains are insufficient to isolate thousands of cloud workers per process. Consequently, cloud service providers have a strong need for lightweight in-process isolation on commodity x86 machines.

This paper presents TME-Box, a novel isolation technique that enables fine-grained and scalable sandboxing on commodity x86 CPUs. By repurposing Intel TME-MK, which is intended for the encryption of virtual machines, TME-Box offers lightweight and efficient in-process isolation. TME-Box enforces that sandboxes use their designated encryption keys for memory interactions through compiler instrumentation. This cryptographic isolation enables fine-grained access control, from single cache lines to full pages, and supports flexible data relocation. In addition, the design of TME-Box allows the efficient isolation of up to 32K concurrent sandboxes. We present a performance-optimized TME-Box prototype, utilizing x86 segment-based addressing, that showcases geomean performance overheads of 5.2 % for data isolation and 9.7 % for code and data isolation, evaluated with the SPEC CPU2017 benchmark suite.

View More Papers

Siniel: Distributed Privacy-Preserving zkSNARK

Yunbo Yang (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Yuejia Cheng (Shanghai DeCareer Consulting Co., Ltd), Kailun Wang (Beijing Jiaotong University), Xiaoguo Li (College of Computer Science, Chongqing University), Jianfei Sun (School of Computing and Information Systems, Singapore Management University), Jiachen Shen (Shanghai Key Laboratory of Trustworthy Computing, East China Normal…

Read More

A Comprehensive Memory Safety Analysis of Bootloaders

Jianqiang Wang (CISPA Helmholtz Center for Information Security), Meng Wang (CISPA Helmholtz Center for Information Security), Qinying Wang (Zhejiang University), Nils Langius (Leibniz Universität Hannover), Li Shi (ETH Zurich), Ali Abbasi (CISPA Helmholtz Center for Information Security), Thorsten Holz (CISPA Helmholtz Center for Information Security)

Read More

The Guardians of Name Street: Studying the Defensive Registration...

Boladji Vinny Adjibi (Georgia Tech), Athanasios Avgetidis (Georgia Tech), Manos Antonakakis (Georgia Tech), Michael Bailey (Georgia Tech), Fabian Monrose (Georgia Tech)

Read More

Magmaw: Modality-Agnostic Adversarial Attacks on Machine Learning-Based Wireless Communication...

Jung-Woo Chang (University of California, San Diego), Ke Sun (University of California, San Diego), Nasimeh Heydaribeni (University of California, San Diego), Seira Hidano (KDDI Research, Inc.), Xinyu Zhang (University of California, San Diego), Farinaz Koushanfar (University of California, San Diego)

Read More