Faysal Hossain Shezan (University of Virginia), Kaiming Cheng (University of Virginia), Zhen Zhang (Johns Hopkins University), Yinzhi Cao (Johns Hopkins University), Yuan Tian (University of Virginia)

Permission-based access control enables users to manage and control their sensitive data for third-party applications. In an ideal scenario, third-party application includes enough details to illustrate the usage of such data, while the reality is that many descriptions of third-party applications are vague about their security or privacy activities. As a result, users are left with insufficient details when granting sensitive data to these applications.

Prior works, such as WHYPER and AutoCog, have addressed the aforementioned problem via a so-called permission correlation system. Such a system correlates third-party applications' description with their requested permissions and determines an application as overprivileged if a mismatch is found. However, although prior works are successful on their own platforms, such as Android eco-system, they are not directly applicable to new platforms, such as Chrome extensions and IFTTT, without extensive data labeling and parameter tuning.

In this paper, we design, implement, and evaluate a novel system, called TKPERM, which transfers knowledges of permission correlation systems across platforms. Our key idea is that these varied platforms with different use cases---like smartphones, IoTs, and desktop browsers---are all user-facing and thus allow the knowledges to be transferrable across platforms. Particularly, we adopt a greedy selection algorithm that picks the best source domains to transfer to the target permission on a new platform.

TKPERM achieves 90.02% overall F1 score after transfer, which is 12.62% higher than the one of a model trained directly on the target domain without transfer. Particularly, TKPERM has 91.83% F1 score on IFTTT, 89.13% F1 score on Chrome-Extension, and 89.1% F1 score on SmartThings. TKPERM also successfully identified many real-world overprivileged applications, such as a gaming hub requesting location permissions without legitimate use.

View More Papers

Decentralized Control: A Case Study of Russia

Reethika Ramesh (University of Michigan), Ram Sundara Raman (University of Michgan), Matthew Bernhard (University of Michigan), Victor Ongkowijaya (University of Michigan), Leonid Evdokimov (Independent), Anne Edmundson (Independent), Steven Sprecher (University of Michigan), Muhammad Ikram (Macquarie University), Roya Ensafi (University of Michigan)

Read More

DefRec: Establishing Physical Function Virtualization to Disrupt Reconnaissance of...

Hui Lin (University of Nevada, Reno), Jianing Zhuang (University of Nevada, Reno), Yih-Chun Hu (University of Illinois, Urbana-Champaign), Huayu Zhou (University of Nevada, Reno)

Read More

Data-Driven Debugging for Functional Side Channels

Saeid Tizpaz-Niari (University of Colorado Boulder), Pavol Černý (TU Wien), Ashutosh Trivedi (University of Colorado Boulder)

Read More

ProtectIOn: Root-of-Trust for IO in Compromised Platforms

Aritra Dhar (ETH Zurich), Enis Ulqinaku (ETH Zurich), Kari Kostiainen (ETH Zurich), Srdjan Capkun (ETH Zurich)

Read More