Wenhao Wang (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Linke Song (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Benshan Mei (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Shuang Liu (Ant Group), Shijun Zhao (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Shoumeng Yan (Ant Group), XiaoFeng Wang (Indiana University Bloomington), Dan Meng (Institute of Information Engineering, CAS), Rui Hou (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS)

Integrity is critical for maintaining system security, as it ensures that only genuine software is loaded onto a machine. Although confidential virtual machines (CVMs) function within isolated environments separate from the host, it is important to recognize that users still encounter challenges in maintaining control over the integrity of the code running within the trusted execution environments (TEEs). The presence of a sophisticated operating system (OS) raises the possibility of dynamically creating and executing any code, making user applications within TEEs vulnerable to interference or tampering if the guest OS is compromised.

To address this issue, this paper introduces NestedSGX, a framework which leverages virtual machine privilege level (VMPL), a recent hardware feature available on AMD SEV-SNP to enable the creation of hardware enclaves within the guest VM. Similar to Intel SGX, NestedSGX considers the guest OS untrusted for loading potentially malicious code. It ensures that only trusted and measured code executed within the enclave can be remotely attested. To seamlessly protect existing applications, NestedSGX aims for compatibility with Intel SGX by simulating SGX leaf functions. We have also ported the SGX SDK and the Occlum library OS to NestedSGX, enabling the use of existing SGX toolchains and applications in the system. Performance evaluations show that context switches in NestedSGX take about 32,000 -- 34,000 cycles, approximately $1.9times$ -- $2.1times$ higher than that of Intel SGX. NestedSGX incurs minimal overhead in most real-world applications, with an average overhead below 2% for computation and memory intensive workloads and below 15.68% for I/O intensive workloads.

View More Papers

A Large-Scale Measurement Study of the PROXY Protocol and...

Stijn Pletinckx (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara), Giovanni Vigna (University of California, Santa Barbara)

Read More

Decoupling Permission Management from Cryptography for Privacy-Preserving Systems

Ruben De Smet (Department of Engineering Technology (INDI), Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel), Tom Godden (Department of Engineering Technology (INDI), Vrije Universiteit Brussel), Kris Steenhaut (Department of Engineering Technology (INDI), Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel), An Braeken (Department of Engineering Technology (INDI), Vrije Universiteit Brussel)

Read More

Siniel: Distributed Privacy-Preserving zkSNARK

Yunbo Yang (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Yuejia Cheng (Shanghai DeCareer Consulting Co., Ltd), Kailun Wang (Beijing Jiaotong University), Xiaoguo Li (College of Computer Science, Chongqing University), Jianfei Sun (School of Computing and Information Systems, Singapore Management University), Jiachen Shen (Shanghai Key Laboratory of Trustworthy Computing, East China Normal…

Read More

An Empirical Study on Fingerprint API Misuse with Lifecycle...

Xin Zhang (Fudan University), Xiaohan Zhang (Fudan University), Zhichen Liu (Fudan University), Bo Zhao (Fudan University), Zhemin Yang (Fudan University), Min Yang (Fudan University)

Read More