Yi Yang (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Jinghua Liu (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Kai Chen (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Miaoqian Lin (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China)

As the basis of software resource management (RM), strictly following the RM-API constraints guarantees secure resource management and software. To enhance the RM-API application, researchers find it effective in detecting RM-API misuse on open-source software according to RM-API constraints retrieved from documentation and code. However, the current pattern-matching constraint retrieval methods have limitations: the documentation-based methods leave many API constraints irregularly distributed or involving neutral sentiment undiscovered; the code-based methods result in many false bugs due to incorrect API usage since not all high-frequency usages are correct.
Therefore, people propose to utilize Large Language Models (LLMs) for RM-API constraint retrieval with their potential on text analysis and generation. However, directly using LLMs has limitations due to the hallucinations. The LLMs fabricate answers without expertise leaving many RM APIs undiscovered and generating incorrect answers even with evidence introducing incorrect RM-API constraints and false bugs.

In this paper, we propose an LLM-empowered RM-API misuse detection solution, ChatDetector, which fully automates LLMs for documentation understanding which helps RM-API constraints retrieval and RM-API misuse detection. To correctly retrieve the RM-API constraints, ChatDetector is inspired by the ReAct framework which is optimized based on Chain-of-Thought (CoT) to decompose the complex task into allocation APIs identification, RM-object (allocated/released by RM APIs) extraction and RM-APIs pairing (RM APIs usually exist in pairs). It first verifies the semantics of allocation APIs based on the retrieved RM sentences from API documentation through LLMs.
Inspired by the LLMs' performance on various prompting methods, ChatDetector adopts a two-dimensional prompting approach for cross-validation. At the same time, an inconsistency-checking approach between the LLMs' output and the reasoning process is adopted for the allocation APIs confirmation with an off-the-shelf Natural Language Processing (NLP) tool. To accurately pair the RM-APIs, ChatDetector decomposes the task again and identifies the RM-object type first, with which it can then accurately pair the releasing APIs and further construct the RM-API constraints for misuse detection. With the diminished hallucinations, ChatDetector identifies 165 pairs of RM-APIs with a precision of 98.21% compared with the state-of-the-art API detectors. By employing a static detector CodeQL, we ethically report 115 security bugs on the applications integrating on six popular libraries to the developers, which may result in severe issues, such as Denial-of-Services (DoS) and memory corruption. Compared with the end-to-end benchmark method, the result shows that ChatDetector can retrieve at least 47% more RM sentences and 80.85% more RM-API constraints. Since no work exists specified in utilizing LLMs for RM-API misuse detection to our best knowledge, the inspiring results show that LLMs can assist in generating more constraints beyond expertise and can be used for bug detection. It also indicates that future research could transfer from overcoming the bottlenecks of traditional NLP tools to creatively utilizing LLMs for security research.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 118 ) ) ) [post__not_in] => Array ( [0] => 20174 ) )

The Guardians of Name Street: Studying the Defensive Registration...

Boladji Vinny Adjibi (Georgia Tech), Athanasios Avgetidis (Georgia Tech), Manos Antonakakis (Georgia Tech), Michael Bailey (Georgia Tech), Fabian Monrose (Georgia Tech)

Read More

Target-Centric Firmware Rehosting with Penguin

Andrew Fasano, Zachary Estrada, Luke Craig, Ben Levy, Jordan McLeod, Jacques Becker, Elysia Witham, Cole DiLorenzo, Caden Kline, Ali Bobi (MIT Lincoln Laboratory), Dinko Dermendzhiev (Georgia Institute of Technology), Tim Leek (MIT Lincoln Laboratory), William Robertson (Northeastern University)

Read More

BitShield: Defending Against Bit-Flip Attacks on DNN Executables

Yanzuo Chen (The Hong Kong University of Science and Technology), Yuanyuan Yuan (The Hong Kong University of Science and Technology), Zhibo Liu (The Hong Kong University of Science and Technology), Sihang Hu (Huawei Technologies), Tianxiang Li (Huawei Technologies), Shuai Wang (The Hong Kong University of Science and Technology)

Read More

Generating API Parameter Security Rules with LLM for API...

Jinghua Liu (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Yi Yang (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Kai Chen (Institute of Information Engineering, Chinese Academy of…

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)