Diwen Xue (University of Michigan), Robert Stanley (University of Michigan), Piyush Kumar (University of Michigan), Roya Ensafi (University of Michigan)

The escalating global trend of Internet censorship has necessitated an increased adoption of proxy tools, especially obfuscated circumvention proxies. These proxies serve a fundamental need for access and connectivity among millions in heavily censored regions. However, as the use of proxies expands, so do censors' dedicated efforts to detect and disrupt such circumvention traffic to enforce their information control policies.

In this paper, we bring out the presence of an inherent fingerprint for detecting obfuscated proxy traffic. The fingerprint is created by the misalignment of transport- and application-layer sessions in proxy routing, which is reflected in the discrepancy in Round Trip Times (RTTs) across network layers. Importantly, being protocol-agnostic, the fingerprint enables an adversary to effectively target multiple proxy protocols simultaneously. We conduct an extensive evaluation using both controlled testbeds and real-world traffic, collected from a partner ISP, to assess the fingerprint's potential for exploitation by censors. In addition to being of interest on its own, our timing-based fingerprinting vulnerability highlights the deficiencies in existing obfuscation approaches. We hope our study brings the attention of the circumvention community to packet timing as an area of concern and leads to the development of more sustainable countermeasures.

View More Papers

mmProcess: Phase-Based Speech Reconstruction from mmWave Radar

Hyeongjun Choi, Young Eun Kwon, Ji Won Yoon (Korea University)

Read More

Distributed Function Secret Sharing and Applications

Pengzhi Xing (University of Electronic Science and Technology of China), Hongwei Li (University of Electronic Science and Technology of China), Meng Hao (Singapore Management University), Hanxiao Chen (University of Electronic Science and Technology of China), Jia Hu (University of Electronic Science and Technology of China), Dongxiao Liu (University of Electronic Science and Technology of China)

Read More