Michael Troncoso (Naval Postgraduate School), Britta Hale (Naval Postgraduate School)

In this paper, we computationally analyze Passkey Entry in its entirety as a cryptographic authenticated key exchange (AKE) -- including user-protocol interactions that are typically ignored as out-of-band. To achieve this, we model the user-to-device channels, as well as the typical device-to-device channel, and adversarial control scenarios in both cases. In particular, we separately capture adversarial control of device displays on the initiating and responding devices as well as adversarial control of user input mechanisms using what we call a CYBORG model. The CYBORG model enables realistic real-world security analysis in light of published attacks on user-mediated protocols such as Bluetooth that leverage malware and device displays. In light of this, we show that all versions of Passkey Entry fail to provide security in our model. Finally, we demonstrate how slight modifications to the protocol would allow it to achieve stronger security guarantees for all current variants of passkey generation, as well as a newly proposed twofold mode of generation we term Dual Passkey Entry. These proof-of-concept modifications point to improved design approaches for user-mediated protocols. Finally, this work points to categories of vulnerabilities, based on compromise type, that could be exploited in Bluetooth Passkey Entry.

View More Papers

To Err.Is Human: Characterizing the Threat of Unintended URLs...

Beliz Kaleli (Boston University), Brian Kondracki (Stony Brook University), Manuel Egele (Boston University), Nick Nikiforakis (Stony Brook University), Gianluca Stringhini (Boston University)

Read More

Practical Blind Membership Inference Attack via Differential Comparisons

Bo Hui (The Johns Hopkins University), Yuchen Yang (The Johns Hopkins University), Haolin Yuan (The Johns Hopkins University), Philippe Burlina (The Johns Hopkins University Applied Physics Laboratory), Neil Zhenqiang Gong (Duke University), Yinzhi Cao (The Johns Hopkins University)

Read More

Who's Hosting the Block Party? Studying Third-Party Blockage of...

Marius Steffens (CISPA Helmholtz Center for Information Security), Marius Musch (TU Braunschweig), Martin Johns (TU Braunschweig), Ben Stock (CISPA Helmholtz Center for Information Security)

Read More

WeepingCAN: A Stealthy CAN Bus-off Attack

Gedare Bloom (University of Colorado Colorado Springs) Best Paper Award Winner ($300 cash prize)!

Read More