Michael Troncoso (Naval Postgraduate School), Britta Hale (Naval Postgraduate School)

In this paper, we computationally analyze Passkey Entry in its entirety as a cryptographic authenticated key exchange (AKE) -- including user-protocol interactions that are typically ignored as out-of-band. To achieve this, we model the user-to-device channels, as well as the typical device-to-device channel, and adversarial control scenarios in both cases. In particular, we separately capture adversarial control of device displays on the initiating and responding devices as well as adversarial control of user input mechanisms using what we call a CYBORG model. The CYBORG model enables realistic real-world security analysis in light of published attacks on user-mediated protocols such as Bluetooth that leverage malware and device displays. In light of this, we show that all versions of Passkey Entry fail to provide security in our model. Finally, we demonstrate how slight modifications to the protocol would allow it to achieve stronger security guarantees for all current variants of passkey generation, as well as a newly proposed twofold mode of generation we term Dual Passkey Entry. These proof-of-concept modifications point to improved design approaches for user-mediated protocols. Finally, this work points to categories of vulnerabilities, based on compromise type, that could be exploited in Bluetooth Passkey Entry.

View More Papers

Tales of Favicons and Caches: Persistent Tracking in Modern...

Konstantinos Solomos (University of Illinois at Chicago), John Kristoff (University of Illinois at Chicago), Chris Kanich (University of Illinois at Chicago), Jason Polakis (University of Illinois at Chicago)

Read More

Does Every Second Count? Time-based Evolution of Malware Behavior...

Alexander Küchler (Fraunhofer AISEC), Alessandro Mantovani (EURECOM), Yufei Han (NortonLifeLock Research Group), Leyla Bilge (NortonLifeLock Research Group), Davide Balzarotti (EURECOM)

Read More

Towards Defeating Mass Surveillance and SARS-CoV-2: The Pronto-C2 Fully...

Gennaro Avitabile, Vincenzo Botta, Vincenzo Iovino, and Ivan Visconti (University of Salerno)

Read More