Joongyum Kim (KAIST), Jung-hwan Park (KAIST), Sooel Son (KAIST)

Mobile ad fraud is a significant threat that victimizes app publishers and their users, thereby undermining the ecosystem of app markets. Prior works on detecting mobile ad fraud have focused on constructing predefined test scenarios that preclude user involvement in identifying ad fraud. However, due to their dependence on contextual testing environments, these works have neglected to track which app modules and which user interactions are responsible for observed ad fraud.

To address these shortcomings, this paper presents the design and implementation of FraudDetective, a dynamic testing framework that identifies ad fraud activities. FraudDetective focuses on identifying fraudulent activities that originate without any user interactions. FraudDetective computes a full stack trace from an observed ad fraud activity to a user event by connecting fragmented multiple stack traces, thus generating the causal relationships between user inputs and the observed fraudulent activity. We revised an Android Open Source Project (AOSP) to emit detected ad fraud activities along with their full stack traces, which help pinpoint the app modules responsible for the observed fraud activities. We evaluate FraudDetective on 48,172 apps from Google Play Store. FraudDetective reports that 74 apps are responsible for 34,453 ad fraud activities and find that 98.6% of the fraudulent behaviors originate from embedded third-party ad libraries. Our evaluation demonstrates that FraudDetective is capable of accurately identifying ad fraud via reasoning based on observed suspicious behaviors without user interactions. The experimental results also yield the new insight that abusive ad service providers harness their ad libraries to actively engage in committing ad fraud.

View More Papers

Shadow Attacks: Hiding and Replacing Content in Signed PDFs

Christian Mainka (Ruhr University Bochum), Vladislav Mladenov (Ruhr University Bochum), Simon Rohlmann (Ruhr University Bochum)

Read More

Towards Defeating Mass Surveillance and SARS-CoV-2: The Pronto-C2 Fully...

Gennaro Avitabile, Vincenzo Botta, Vincenzo Iovino, and Ivan Visconti (University of Salerno)

Read More

TASE: Reducing Latency of Symbolic Execution with Transactional Memory

Adam Humphries (University of North Carolina), Kartik Cating-Subramanian (University of Colorado), Michael K. Reiter (Duke University)

Read More

LaKSA: A Probabilistic Proof-of-Stake Protocol

Daniel Reijsbergen (Singapore University of Technology and Design), Pawel Szalachowski (Singapore University of Technology and Design), Junming Ke (University of Tartu), Zengpeng Li (Singapore University of Technology and Design), Jianying Zhou (Singapore University of Technology and Design)

Read More