Joongyum Kim (KAIST), Jung-hwan Park (KAIST), Sooel Son (KAIST)

Mobile ad fraud is a significant threat that victimizes app publishers and their users, thereby undermining the ecosystem of app markets. Prior works on detecting mobile ad fraud have focused on constructing predefined test scenarios that preclude user involvement in identifying ad fraud. However, due to their dependence on contextual testing environments, these works have neglected to track which app modules and which user interactions are responsible for observed ad fraud.

To address these shortcomings, this paper presents the design and implementation of FraudDetective, a dynamic testing framework that identifies ad fraud activities. FraudDetective focuses on identifying fraudulent activities that originate without any user interactions. FraudDetective computes a full stack trace from an observed ad fraud activity to a user event by connecting fragmented multiple stack traces, thus generating the causal relationships between user inputs and the observed fraudulent activity. We revised an Android Open Source Project (AOSP) to emit detected ad fraud activities along with their full stack traces, which help pinpoint the app modules responsible for the observed fraud activities. We evaluate FraudDetective on 48,172 apps from Google Play Store. FraudDetective reports that 74 apps are responsible for 34,453 ad fraud activities and find that 98.6% of the fraudulent behaviors originate from embedded third-party ad libraries. Our evaluation demonstrates that FraudDetective is capable of accurately identifying ad fraud via reasoning based on observed suspicious behaviors without user interactions. The experimental results also yield the new insight that abusive ad service providers harness their ad libraries to actively engage in committing ad fraud.

View More Papers

PHOENIX: Device-Centric Cellular Network Protocol Monitoring using Runtime Verification

Mitziu Echeverria (The University of Iowa), Zeeshan Ahmed (The University of Iowa), Bincheng Wang (The University of Iowa), M. Fareed Arif (The University of Iowa), Syed Rafiul Hussain (Pennsylvania State University), Omar Chowdhury (The University of Iowa)

Read More

Impact Evaluation of Falsified Data Attacks on Connected Vehicle...

Shihong Huang (University of Michigan, Ann Arbor), Yiheng Feng (Purdue University), Wai Wong (University of Michigan, Ann Arbor), Qi Alfred Chen (UC Irvine), Z. Morley Mao and Henry X. Liu (University of Michigan, Ann Arbor) Best Paper Award Runner-up ($200 cash prize)!

Read More

KUBO: Precise and Scalable Detection of User-triggerable Undefined Behavior...

Changming Liu (Northeastern University), Yaohui Chen (Facebook Inc.), Long Lu (Northeastern University)

Read More

Google/Apple Exposure Notification Due Diligence

Douglas Leith and Stephen Farrell (Trinity College Dublin)

Read More