Hengzhi Pei (UIUC), Jinyuan Jia (UIUC, Penn State), Wenbo Guo (UC Berkeley, Purdue University), Bo Li (UIUC), Dawn Song (UC Berkeley)

Backdoor attacks have become a major security threat for deploying machine learning models in security-critical applications. Existing research endeavors have proposed many defenses against backdoor attacks. Despite demonstrating certain empirical defense efficacy, none of these techniques could provide a formal and provable security guarantee against arbitrary attacks. As a result, they can be easily broken by strong adaptive attacks, as shown in our evaluation. In this work, we propose TextGuard, the first provable defense against backdoor attacks on text classification. In particular, TextGuard first divides the (backdoored) training data into sub-training sets, achieved by splitting each training sentence into sub-sentences. This partitioning ensures that a majority of the sub-training sets do not contain the backdoor trigger. Subsequently, a base classifier is trained from each sub-training set, and their ensemble provides the final prediction. We theoretically prove that when the length of the backdoor trigger falls within a certain threshold, TextGuard guarantees that its prediction will remain unaffected by the presence of the triggers in training and testing inputs. In our evaluation, we demonstrate the effectiveness of TextGuard on three benchmark text classification tasks, surpassing the certification accuracy of existing certified defenses against backdoor attacks. Furthermore, we propose additional strategies to enhance the empirical performance of TextGuard. Comparisons with state-of-the-art empirical defenses validate the superiority of TextGuard in countering multiple backdoor attacks. Our code and data are available at https://github.com/AI-secure/TextGuard.

View More Papers

PrintListener: Uncovering the Vulnerability of Fingerprint Authentication via the...

Man Zhou (Huazhong University of Science and Technology), Shuao Su (Huazhong University of Science and Technology), Qian Wang (Wuhan University), Qi Li (Tsinghua University), Yuting Zhou (Huazhong University of Science and Technology), Xiaojing Ma (Huazhong University of Science and Technology), Zhengxiong Li (University of Colorado Denver)

Read More

WIP: Shadow Hack: Adversarial Shadow Attack Against LiDAR Object...

Ryunosuke Kobayashi, Kazuki Nomoto, Yuna Tanaka, Go Tsuruoka (Waseda University), Tatsuya Mori (Waseda University/NICT/RIKEN)

Read More

WIP: Body Posture Analysis as an Objective Measurement for...

Cherin Lim, Tianhao Xu, Prashanth Rajivan (University of Washington)

Read More

PriSrv: Privacy-Enhanced and Highly Usable Service Discovery in Wireless...

Yang Yang (School of Computing and Information Systems, Singapore Management University, Singapore), Robert H. Deng (School of Computing and Information Systems, Singapore Management University, Singapore), Guomin Yang (School of Computing and Information Systems, Singapore Management University, Singapore), Yingjiu Li (Department of Computer Science, University of Oregon, USA), HweeHwa Pang (School of Computing and Information Systems,…

Read More