Adam Humphries (University of North Carolina), Kartik Cating-Subramanian (University of Colorado), Michael K. Reiter (Duke University)

We present the design and implementation of a tool called TASE that uses transactional memory to reduce the latency of symbolic-execution applications with small amounts of symbolic state.
Execution paths are executed natively while operating on concrete values, and only when execution encounters symbolic values (or modeled functions) is native execution suspended and interpretation begun. Execution then returns to its native mode when symbolic values are no longer encountered. The key innovations in the design of TASE are a technique for amortizing the cost of checking whether values are symbolic over few instructions, and the use of hardware-supported transactional memory (TSX) to implement native execution that rolls back with no effect when use of a symbolic value is detected (perhaps belatedly). We show that TASE has the potential to dramatically improve some latency-sensitive applications of symbolic execution, such as methods to verify the behavior of a client in a client-server application.

View More Papers

My Past Dictates my Present: Relevance, Exposure, and Influence...

Shujaat Mirza, Christina Pöpper (New York University)

Read More

Practical Blind Membership Inference Attack via Differential Comparisons

Bo Hui (The Johns Hopkins University), Yuchen Yang (The Johns Hopkins University), Haolin Yuan (The Johns Hopkins University), Philippe Burlina (The Johns Hopkins University Applied Physics Laboratory), Neil Zhenqiang Gong (Duke University), Yinzhi Cao (The Johns Hopkins University)

Read More

IoTSafe: Enforcing Safety and Security Policy with Real IoT...

Wenbo Ding (Clemson University), Hongxin Hu (University at Buffalo), Long Cheng (Clemson University)

Read More

Ovid: Message-based Automatic Contact Tracing

Leonie Reichert and Samuel Brack (Humboldt University of Berlin); Björn Scheuermann (Humboldt-University of Berlin)

Read More