Sebastian Poeplau (EURECOM and Code Intelligence), Aurélien Francillon (EURECOM)

Symbolic execution is a powerful technique for software analysis and bug detection. Compilation-based symbolic execution is a recently proposed flavor that has been shown to improve the performance of symbolic execution significantly when source code is available. We demonstrate a novel technique to enable compilation-based symbolic execution of binaries (i.e., without the need for source code). Our system, SymQEMU, builds on top of QEMU, modifying the intermediate representation of the target program before translating it to the host architecture. This enables SymQEMU to compile symbolic-execution capabilities into binaries and reap the associated performance benefits while maintaining architecture independence.

We present our approach and implementation, and we show that it outperforms the state-of-the-art binary symbolic executors S2E and QSYM with statistical significance; on some benchmarks, it even achieves better performance than the source-based SymCC. Moreover, our tool has found a previously unknown vulnerability in the well-tested libarchive library, demonstrating its utility in testing real-world software.

View More Papers

PFirewall: Semantics-Aware Customizable Data Flow Control for Smart Home...

Haotian Chi (Temple University), Qiang Zeng (University of South Carolina), Xiaojiang Du (Temple University), Lannan Luo (University of South Carolina)

Read More

An Analysis of First-Party Cookie Exfiltration due to CNAME...

Tongwei Ren (Worcester Polytechnic Institute), Alexander Wittmany (University of Kansas), Lorenzo De Carli (Worcester Polytechnic Institute), Drew Davidsony (University of Kansas)

Read More

Censored Planet: An Internet-wide, Longitudinal Censorship Observatory

R. Sundara Raman, P. Shenoy, K. Kohls, and R. Ensafi (University of Michigan)

Read More

FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping

Xiaoyu Cao (Duke University), Minghong Fang (The Ohio State University), Jia Liu (The Ohio State University), Neil Zhenqiang Gong (Duke University)

Read More