Hang Zhang (Indiana University Bloomington), Jangha Kim (The Affiliated Institute of ETRI, ROK), Chuhong Yuan (Georgia Institute of Technology), Zhiyun Qian (University of California, Riverside), Taesoo Kim (Georgia Institute of Technology)

Use-After-Free (UAF) is one of the most widely spread and severe memory safety issues, attracting lots of research efforts toward its automatic discovery. Existing UAF detection approaches include two major categories: dynamic and static. While dynamic methods like fuzzing can detect UAF issues with high precision, they are inherently limited in code coverage. Static approaches, on the other hand, can usually only discover simple sequential UAF cases, despite that many real-world UAF bugs involve intricate cross-entry control and data flows (e.g., concurrent UAFs). Limited static tools supporting cross-entry UAF detection also suffer from inaccuracy or narrowed scope (e.g., cannot handle complex codebases like the Linux kernel).

In this paper, we propose UAFX, a static analyzer capable of discovering cross-entry UAF vulnerabilities in the Linux kernel and potentially extensible to general C programs. UAFX is powered by a novel escape-fetch-based cross-entry alias analysis, enabling it to accurately analyze the alias relationships between the use and free sites even when they scatter in different entry functions. UAFX is also equipped with a systematic UAF validation framework based on partial-order constraints, allowing it to reliably reason about multiple UAF-related code aspects (e.g., locks, path conditions, threads) to filter out false alarms. Our evaluation shows that UAFX can discover new cross-entry UAF vulnerabilities in the kernel and one user-space program (80 true positive warnings), with reasonable reviewer-perceived precision (more than 40%) and performance.

View More Papers

Heimdall: Towards Risk-Aware Network Management Outsourcing

Yuejie Wang (Peking University), Qiutong Men (New York University), Yongting Chen (New York University Shanghai), Jiajin Liu (New York University Shanghai), Gengyu Chen (Carnegie Mellon University), Ying Zhang (Meta), Guyue Liu (Peking University), Vyas Sekar (Carnegie Mellon University)

Read More

BinEnhance: An Enhancement Framework Based on External Environment Semantics...

Yongpan Wang (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China), Hong Li (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China), Xiaojie Zhu (King Abdullah University of Science and Technology, Thuwal, Saudi Arabia), Siyuan Li (Institute of Information Engineering Chinese…

Read More

On the Robustness of LDP Protocols for Numerical Attributes...

Xiaoguang Li (Xidian University, Purdue University), Zitao Li (Alibaba Group (U.S.) Inc.), Ninghui Li (Purdue University), Wenhai Sun (Purdue University, West Lafayette, USA)

Read More

Black-box Membership Inference Attacks against Fine-tuned Diffusion Models

Yan Pang (University of Virginia), Tianhao Wang (University of Virginia)

Read More