Zhenxiao Qi (UC Riverside), Qian Feng (Baidu USA), Yueqiang Cheng (NIO Security Research), Mengjia Yan (MIT), Peng Li (ByteDance), Heng Yin (UC Riverside), Tao Wei (Ant Group)

Software patching is a crucial mitigation approach against Spectre-type attacks. It utilizes serialization instructions to disable speculative execution of potential Spectre gadgets in a program. Unfortunately, there are no effective solutions to detect gadgets for Spectre-type attacks. In this paper, we propose a novel Spectre gadget detection technique by enabling dynamic taint analysis on speculative execution paths. To this end, we simulate and explore speculative execution at the system level (within a CPU emulator). We have implemented a prototype called SpecTaint to demonstrate the efficacy of our proposed approach. We evaluated SpecTaint on our Spectre Samples Dataset, and compared SpecTaint with existing state-of-the-art Spectre gadget detection approaches on real-world applications. Our experimental results demonstrate that SpecTaint outperforms existing methods with respect to detection precision and recall by large margins, and it also detects new Spectre gadgets in real-world applications such as Caffe and Brotli. Besides, SpecTaint significantly reduces the performance overhead after patching the detected gadgets, compared with other approaches.

View More Papers

XDA: Accurate, Robust Disassembly with Transfer Learning

Kexin Pei (Columbia University), Jonas Guan (University of Toronto), David Williams-King (Columbia University), Junfeng Yang (Columbia University), Suman Jana (Columbia University)

Read More

Is Your Firmware Real or Re-Hosted? A case study...

Abraham A. Clements, Logan Carpenter, William A. Moeglein (Sandia National Laboratories), Christopher Wright (Purdue University)

Read More

Safer Illinois and RokWall: Privacy Preserving University Health Apps...

Vikram Sharma Mailthody, James Wei, Nicholas Chen, Mohammad Behnia, Ruihao Yao, Qihao Wang, Vedant Agarwal, Churan He, Lijian Wang, Leihao Chen, Amit Agarwal, Edward Richter, Wen-mei Hwu, and Christopher Fletcher (University of Illinois at Urbana-Champaign); Jinjun Xiong (IBM); Andrew Miller and Sanjay Patel (University of Illinois at Urbana-Champaign)

Read More

Preventing and Detecting State Inference Attacks on Android

Andrea Possemato (IDEMIA and EURECOM), Dario Nisi (EURECOM), Yanick Fratantonio (EURECOM and Cisco Talos)

Read More