Derin Cayir (Florida International University), Reham Mohamed Aburas (American University of Sharjah), Riccardo Lazzeretti (Sapienza University of Rome), Marco Angelini (Link Campus University of Rome), Abbas Acar (Florida International University), Mauro Conti (University of Padua), Z. Berkay Celik (Purdue University), Selcuk Uluagac (Florida International University)

As Virtual Reality (VR) technologies advance, their application in privacy-sensitive contexts, such as meetings, lectures, simulations, and training, expands. These environments often involve conversations that contain privacy-sensitive information about users and the individuals with whom they interact. The presence of advanced sensors in modern VR devices raises concerns about possible side-channel attacks that exploit these sensor capabilities. In this paper, we introduce IMMERSPY, a novel acoustic side-channel attack that exploits motion sensors in VR devices to extract sensitive speech content from on-device speakers. We analyze two powerful attacker scenarios: informed attacker, where the attacker possesses labeled data about the victim, and uninformed attacker, where no prior victim information is available. We design a Mel-spectrogram CNN-LSTM model to extract digit information (e.g., social security or credit card numbers) by learning the speech-induced vibrations captured by motion sensors. Our experiments show that IMMERSPY detects four consecutive digits with 74% accuracy and 16-digit sequences, such as credit card numbers, with 62% accuracy. Additionally, we leverage Generative AI text-to-speech models in our attack experiments to illustrate how the attackers can create training datasets even without the need to use the victim’s labeled data. Our findings highlight the critical need for security measures in VR domains to mitigate evolving privacy risks. To address this, we introduce a defense technique that emits inaudible tones through the Head-Mounted Display (HMD) speakers, showing its effectiveness in mitigating acoustic side-channel attacks.

View More Papers

SKILLPoV: Towards Accessible and Effective Privacy Notice for Amazon...

Jingwen Yan (Clemson University), Song Liao (Texas Tech University), Mohammed Aldeen (Clemson University), Luyi Xing (Indiana University Bloomington), Danfeng (Daphne) Yao (Virginia Tech), Long Cheng (Clemson University)

Read More

The Forking Way: When TEEs Meet Consensus

Annika Wilde (Ruhr University Bochum), Tim Niklas Gruel (Ruhr University Bochum), Claudio Soriente (NEC Laboratories Europe), Ghassan Karame (Ruhr University Bochum)

Read More

Magmaw: Modality-Agnostic Adversarial Attacks on Machine Learning-Based Wireless Communication...

Jung-Woo Chang (University of California, San Diego), Ke Sun (University of California, San Diego), Nasimeh Heydaribeni (University of California, San Diego), Seira Hidano (KDDI Research, Inc.), Xinyu Zhang (University of California, San Diego), Farinaz Koushanfar (University of California, San Diego)

Read More

The Discriminative Power of Cross-layer RTTs in Fingerprinting Proxy...

Diwen Xue (University of Michigan), Robert Stanley (University of Michigan), Piyush Kumar (University of Michigan), Roya Ensafi (University of Michigan)

Read More