Huadi Zhu (The University of Texas at Arlington), Mingyan Xiao (The University of Texas at Arlington), Demoria Sherman (The University of Texas at Arlington), Ming Li (The University of Texas at Arlington)

Virtual Reality (VR) has shown promising potential in many applications, such as e-business, healthcare, and social networking. Rich information regarding users' activities and online accounts is stored in VR devices. If {they are} carelessly unattended, adversarial access will cause data breaches and other critical consequences. Practical user authentication schemes for VR devices are in dire need. Current solutions, including passwords, digital PINs, and pattern locks, mostly follow conventional approaches for general personal devices. They have been criticized for deficits in both security and usability. In this work, we propose SoundLock, a novel user authentication scheme for VR devices using auditory-pupillary response as biometrics. During authentication, auditory stimuli are presented to the user via the VR headset. The corresponding pupillary response is captured by the integrated eye tracker. User's legitimacy is then determined by comparing the response with the template generated during the enrollment stage. To strike a balance between security and usability in the scheme design, an optimization problem is formulated. Due to its non-linearity, a two-stage heuristic algorithm is proposed to solve it efficiently. The solution provides necessary guidance for selecting effective auditory stimuli and determining their corresponding lengths. We demonstrate through extensive in-field experiments that SoundLock outperforms state-of-the-art biometric solutions with FAR (FRR) as low as 0.76% (0.91%) and is well received among participants in the user study.

View More Papers

Short: Certifiably Robust Perception Against Adversarial Patch Attacks: A...

Chong Xiang (Princeton University), Chawin Sitawarin (University of California, Berkeley), Tong Wu (Princeton University), Prateek Mittal (Princeton University)

Read More

OptRand: Optimistically Responsive Reconfigurable Distributed Randomness

Adithya Bhat (Purdue University), Nibesh Shrestha (Rochester Institute of Technology), Aniket Kate (Purdue University), Kartik Nayak (Duke University)

Read More

WIP: Practical Removal Attacks on LiDAR-based Object Detection in...

Takami Sato (University of California, Irvine), Yuki Hayakawa (Keio University), Ryo Suzuki (Keio University), Yohsuke Shiiki (Keio University), Kentaro Yoshioka (Keio University), Qi Alfred Chen (University of California, Irvine)

Read More

Fusion: Efficient and Secure Inference Resilient to Malicious Servers

Caiqin Dong (Jinan University), Jian Weng (Jinan University), Jia-Nan Liu (Jinan University), Yue Zhang (Jinan University), Yao Tong (Guangzhou Fongwell Data Limited Company), Anjia Yang (Jinan University), Yudan Cheng (Jinan University), Shun Hu (Jinan University)

Read More