Akul Goyal (University of Illinois at Urbana-Champaign), Xueyuan Han (Wake Forest University), Gang Wang (University of Illinois at Urbana-Champaign), Adam Bates (University of Illinois at Urbana-Champaign)

Reliable methods for host-layer intrusion detection remained an open problem within computer security. Recent research has recast intrusion detection as a provenance graph anomaly detection problem thanks to concurrent advancements in machine learning and causal graph auditing. While these approaches show promise, their robustness against an adaptive adversary has yet to be proven. In particular, it is unclear if mimicry attacks, which plagued past approaches to host intrusion detection, have a similar effect on modern graph-based methods.

In this work, we reveal that systematic design choices have allowed mimicry attacks to continue to abound in provenance graph host intrusion detection systems (Prov-HIDS). Against a corpus of exemplar Prov-HIDS, we develop evasion tactics that allow attackers to hide within benign process behaviors. Evaluating against public datasets, we demonstrate that an attacker can consistently evade detection (100% success rate) without modifying the underlying attack behaviors. We go on to show that our approach is feasible in live attack scenarios and outperforms domain-general adversarial sample techniques. Through open sourcing our code and datasets, this work will serve as a benchmark for the evaluation of future Prov-HIDS.

View More Papers

Towards Automatic and Precise Heap Layout Manipulation for General-Purpose...

Runhao Li (National University of Defense Technology), Bin Zhang (National University of Defense Technology), Jiongyi Chen (National University of Defense Technology), Wenfeng Lin (National University of Defense Technology), Chao Feng (National University of Defense Technology), Chaojing Tang (National University of Defense Technology)

Read More

A Security Study about Electron Applications and a Programming...

Zihao Jin (Microsoft Research and Tsinghua University), Shuo Chen (Microsoft Research), Yang Chen (Microsoft Research), Haixin Duan (Tsinghua University and Quancheng Laboratory), Jianjun Chen (Tsinghua University and Zhongguancun Laboratory), Jianping Wu (Tsinghua University)

Read More

REaaS: Enabling Adversarially Robust Downstream Classifiers via Robust Encoder...

Wenjie Qu (Huazhong University of Science and Technology), Jinyuan Jia (University of Illinois Urbana-Champaign), Neil Zhenqiang Gong (Duke University)

Read More

Private Certifier Intersection

Bishakh Chandra Ghosh (Indian Institute of Technology Kharagpur), Sikhar Patranabis (IBM Research - India), Dhinakaran Vinayagamurthy (IBM Research - India), Venkatraman Ramakrishna (IBM Research - India), Krishnasuri Narayanam (IBM Research - India), Sandip Chakraborty (Indian Institute of Technology Kharagpur)

Read More