Sian Kim (Ewha Womans University), Seyed Mohammad Mehdi Mirnajafizadeh (Wayne State University), Bara Kim (Korea University), Rhongho Jang (Wayne State University), DaeHun Nyang (Ewha Womans University)

Intelligent Network Data Plane (INDP) is emerging as a promising direction for in-network security due to the advancement of machine learning technologies and the importance of fast mitigation of attacks. However, the feature extraction function still poses various challenges due to multiple hardware constraints in the data plane, especially for the advanced per-flow 3rd-order features (e.g., inter-packet delay and packet size distributions) preferred by recent security applications. In this paper, we discover novel attack surfaces of state-of-the-art data plane feature extractors that had to accommodate the hardware constraints, allowing adversaries to evade the entire attack detection loop of in-network intrusion detection systems. To eliminate the attack surfaces fundamentally, we pursue an evolution of a probabilistic (sketch) approach to enable flawless 3rd-order feature extraction, highlighting High-resolution, All-flow, and Full-range (HAF) 3rd-order feature measurement capacity. To our best knowledge, the proposed scheme, namely SketchFeature, is the first sketch-based 3rd-order feature extractor fully deployable in the data plane. Through extensive analyses, we confirmed the robust performance of SketchFeature theoretically and experimentally. Furthermore, we ran various security use cases, namely covert channel, botnet, and DDoS detections, with SketchFeature as a feature extractor, and achieved near-optimal attack detection performance.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 118 ) ) ) [post__not_in] => Array ( [0] => 20055 ) )

VulShield: Protecting Vulnerable Code Before Deploying Patches

Yuan Li (Zhongguancun Laboratory & Tsinghua University), Chao Zhang (Tsinghua University & JCSS & Zhongguancun Laboratory), Jinhao Zhu (UC Berkeley), Penghui Li (Zhongguancun Laboratory), Chenyang Li (Peking University), Songtao Yang (Zhongguancun Laboratory), Wende Tan (Tsinghua University)

Read More

Automatic Insecurity: Exploring Email Auto-configuration in the Wild

Shushang Wen (School of Cyber Science and Technology, University of Science and Technology of China), Yiming Zhang (Tsinghua University), Yuxiang Shen (School of Cyber Science and Technology, University of Science and Technology of China), Bingyu Li (School of Cyber Science and Technology, Beihang University), Haixin Duan (Tsinghua University; Zhongguancun Laboratory), Jingqiang Lin (School of Cyber…

Read More

Towards Anonymous Chatbots with (Un)Trustworthy Browser Proxies

Dzung Pham, Jade Sheffey, Chau Minh Pham, and Amir Houmansadr (University of Massachusetts Amherst)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)