Yunbo Yang (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Yuejia Cheng (Shanghai DeCareer Consulting Co., Ltd), Kailun Wang (Beijing Jiaotong University), Xiaoguo Li (College of Computer Science, Chongqing University), Jianfei Sun (School of Computing and Information Systems, Singapore Management University), Jiachen Shen (Shanghai Key Laboratory of Trustworthy Computing, East China Normal University), Xiaolei Dong (Shanghai Key Laboratory of Trustworthy Computing, East China Normal University), Zhenfu Cao (Shanghai Key Laboratory of Trustworthy Computing, East China Normal University), Guomin Yang (School of Computing and Information Systems, Singapore Management University), Robert H. Deng (School of Computing and Information Systems, Singapore Management University)

Zero-knowledge Succinct Non-interactive Argument of Knowledge (zkSNARK) is a powerful cryptographic primitive, in which a prover convinces a verifier that a given statement is true without leaking any additional information. However, existing zkSNARKs suffer from high computation overhead in the proof generation. This limits the applications of zkSNARKs, such as private payments, private smart contracts, and anonymous credentials. Private delegation has become a prominent way to accelerate proof generation.

In this work, we propose Siniel, an efficient private delegation framework for zkSNARKs constructed from polynomial interactive oracle proof (PIOP) and polynomial commitment scheme (PCS). Our protocol allows a computationally limited prover (a.k.a. delegator) to delegate its expensive prover computation to several workers without leaking any information about the private witness. Most importantly, compared with the recent work EOS (USENIX'23), the state-of-the-art zkSNARK prover delegation framework, a prover in Siniel needs not to engage in the MPC protocol after sending its shares of private witness. This means that a Siniel prover can outsource the entire computation to the workers.

We compare Siniel with EOS and show significant performance advantages of the former. The experimental results show that, under low bandwidth conditions (10MBps), Siniel saves about 16% time for delegators than that of EOS, whereas under high bandwidth conditions (1000MBps), Siniel saves about 80% than EOS.

View More Papers

A Systematic Evaluation of Novel and Existing Cache Side...

Fabian Rauscher (Graz University of Technology), Carina Fiedler (Graz University of Technology), Andreas Kogler (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More

Keynote talk by Prof. Gene Tsudik (University of California,...

Dr. Gene Tsudik, Distinguished Professor of Computer Science, University of California, Irvine

Read More

DLBox: New Model Training Framework for Protecting Training Data

Jaewon Hur (Seoul National University), Juheon Yi (Nokia Bell Labs, Cambridge, UK), Cheolwoo Myung (Seoul National University), Sangyun Kim (Seoul National University), Youngki Lee (Seoul National University), Byoungyoung Lee (Seoul National University)

Read More

Trim My View: An LLM-Based Code Query System for...

Sima Arasteh (University of Southern California), Pegah Jandaghi, Nicolaas Weideman (University of Southern California/Information Sciences Institute), Dennis Perepech, Mukund Raghothaman (University of Southern California), Christophe Hauser (Dartmouth College), Luis Garcia (University of Utah Kahlert School of Computing)

Read More