Yunbo Yang (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Yuejia Cheng (Shanghai DeCareer Consulting Co., Ltd), Kailun Wang (Beijing Jiaotong University), Xiaoguo Li (College of Computer Science, Chongqing University), Jianfei Sun (School of Computing and Information Systems, Singapore Management University), Jiachen Shen (Shanghai Key Laboratory of Trustworthy Computing, East China Normal University), Xiaolei Dong (Shanghai Key Laboratory of Trustworthy Computing, East China Normal University), Zhenfu Cao (Shanghai Key Laboratory of Trustworthy Computing, East China Normal University), Guomin Yang (School of Computing and Information Systems, Singapore Management University), Robert H. Deng (School of Computing and Information Systems, Singapore Management University)

Zero-knowledge Succinct Non-interactive Argument of Knowledge (zkSNARK) is a powerful cryptographic primitive, in which a prover convinces a verifier that a given statement is true without leaking any additional information. However, existing zkSNARKs suffer from high computation overhead in the proof generation. This limits the applications of zkSNARKs, such as private payments, private smart contracts, and anonymous credentials. Private delegation has become a prominent way to accelerate proof generation.

In this work, we propose Siniel, an efficient private delegation framework for zkSNARKs constructed from polynomial interactive oracle proof (PIOP) and polynomial commitment scheme (PCS). Our protocol allows a computationally limited prover (a.k.a. delegator) to delegate its expensive prover computation to several workers without leaking any information about the private witness. Most importantly, compared with the recent work EOS (USENIX'23), the state-of-the-art zkSNARK prover delegation framework, a prover in Siniel needs not to engage in the MPC protocol after sending its shares of private witness. This means that a Siniel prover can outsource the entire computation to the workers.

We compare Siniel with EOS and show significant performance advantages of the former. The experimental results show that, under low bandwidth conditions (10MBps), Siniel saves about 16% time for delegators than that of EOS, whereas under high bandwidth conditions (1000MBps), Siniel saves about 80% than EOS.

View More Papers

On the Realism of LiDAR Spoofing Attacks against Autonomous...

Takami Sato (University of California, Irvine), Ryo Suzuki (Keio University), Yuki Hayakawa (Keio University), Kazuma Ikeda (Keio University), Ozora Sako (Keio University), Rokuto Nagata (Keio University), Ryo Yoshida (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More

Ring of Gyges: Accountable Anonymous Broadcast via Secret-Shared Shuffle

Wentao Dong (City University of Hong Kong), Peipei Jiang (Wuhan University; City University of Hong Kong), Huayi Duan (ETH Zurich), Cong Wang (City University of Hong Kong), Lingchen Zhao (Wuhan University), Qian Wang (Wuhan University)

Read More

PhantomLiDAR: Cross-modality Signal Injection Attacks against LiDAR

Zizhi Jin (Zhejiang University), Qinhong Jiang (Zhejiang University), Xuancun Lu (Zhejiang University), Chen Yan (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More

LADDER: Multi-Objective Backdoor Attack via Evolutionary Algorithm

Dazhuang Liu (Delft University of Technology), Yanqi Qiao (Delft University of Technology), Rui Wang (Delft University of Technology), Kaitai Liang (Delft University of Technology), Georgios Smaragdakis (Delft University of Technology)

Read More