Yunbo Yang (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Yuejia Cheng (Shanghai DeCareer Consulting Co., Ltd), Kailun Wang (Beijing Jiaotong University), Xiaoguo Li (College of Computer Science, Chongqing University), Jianfei Sun (School of Computing and Information Systems, Singapore Management University), Jiachen Shen (Shanghai Key Laboratory of Trustworthy Computing, East China Normal University), Xiaolei Dong (Shanghai Key Laboratory of Trustworthy Computing, East China Normal University), Zhenfu Cao (Shanghai Key Laboratory of Trustworthy Computing, East China Normal University), Guomin Yang (School of Computing and Information Systems, Singapore Management University), Robert H. Deng (School of Computing and Information Systems, Singapore Management University)

Zero-knowledge Succinct Non-interactive Argument of Knowledge (zkSNARK) is a powerful cryptographic primitive, in which a prover convinces a verifier that a given statement is true without leaking any additional information. However, existing zkSNARKs suffer from high computation overhead in the proof generation. This limits the applications of zkSNARKs, such as private payments, private smart contracts, and anonymous credentials. Private delegation has become a prominent way to accelerate proof generation.

In this work, we propose Siniel, an efficient private delegation framework for zkSNARKs constructed from polynomial interactive oracle proof (PIOP) and polynomial commitment scheme (PCS). Our protocol allows a computationally limited prover (a.k.a. delegator) to delegate its expensive prover computation to several workers without leaking any information about the private witness. Most importantly, compared with the recent work EOS (USENIX'23), the state-of-the-art zkSNARK prover delegation framework, a prover in Siniel needs not to engage in the MPC protocol after sending its shares of private witness. This means that a Siniel prover can outsource the entire computation to the workers.

We compare Siniel with EOS and show significant performance advantages of the former. The experimental results show that, under low bandwidth conditions (10MBps), Siniel saves about 16% time for delegators than that of EOS, whereas under high bandwidth conditions (1000MBps), Siniel saves about 80% than EOS.

View More Papers

Rethink Custom Transformers for Binary Analysis

Heng Yin, Professor, Department of Computer Science and Engineering, University of California, Riverside

Read More

Work-in-Progress: Towards Browser-Based Consent Management

Gayatri Priyadarsini Kancherla and Abhishek Bichhawat (Indian Institute of Technology Gandhinagar)

Read More

Spatial-Domain Wireless Jamming with Reconfigurable Intelligent Surfaces

Philipp Mackensen (Ruhr University Bochum), Paul Staat (Max Planck Institute for Security and Privacy), Stefan Roth (Ruhr University Bochum), Aydin Sezgin (Ruhr University Bochum), Christof Paar (Max Planck Institute for Security and Privacy), Veelasha Moonsamy (Ruhr University Bochum)

Read More

Poster: Understanding User Acceptance of Privacy Labels: Barriers and...

Jingwen Yan (Clemson University), Mohammed Aldeen (Clemson University), Jalil Harris (Clemson University), Kellen Grossenbacher (Clemson University), Aurore Munyaneza (Texas Tech University), Song Liao (Texas Tech University), Long Cheng (Clemson University)

Read More