Qiyang Song (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Heqing Huang (Institute of Information Engineering, Chinese Academy of Sciences), Xiaoqi Jia (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Yuanbo Xie (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Jiahao Cao (Institute for Network Sciences and Cyberspace, Tsinghua University)

Reentrancy vulnerabilities in Ethereum smart contracts have caused significant financial losses, prompting the creation of several automated reentrancy detectors. However, these detectors frequently yield a high rate of false positives due to coarse detection rules, often misclassifying contracts protected by anti-reentrancy patterns as vulnerable. Thus, there is a critical need for the development of specialized automated tools to assist these detectors in accurately identifying anti-reentrancy patterns. While existing code analysis techniques show promise for this specific task, they still face significant challenges in recognizing anti-reentrancy patterns. These challenges are primarily due to the complex and varied features of anti-reentrancy patterns, compounded by insufficient prior knowledge about these features.

This paper introduces AutoAR, an automated recognition system designed to explore and identify prevalent anti-reentrancy patterns in Ethereum contracts. AutoAR utilizes a specialized graph representation, RentPDG, combined with a data filtration approach, to effectively capture anti-reentrancy-related semantics from a large pool of contracts. Based on RentPDGs extracted from these contracts, AutoAR employs a recognition model that integrates a graph auto-encoder with a clustering technique, specifically tailored for precise anti-reentrancy pattern identification. Experimental results show AutoAR can assist existing detectors in identifying 12 prevalent anti-reentrancy patterns with 89% accuracy, and when integrated into the detection workflow, it significantly reduces false positives by over 85%.

View More Papers

Query Privacy in Data Spaces

Shuwen Liu (School of Data Science, The Chinese University of Hong Kong, Shenzhen, China), George C. Polyzos (School of Data Science, The Chinese University of Hong Kong, Shenzhen, China and ExcID P.C., Athens, Greece)

Read More

RACONTEUR: A Knowledgeable, Insightful, and Portable LLM-Powered Shell Command...

Jiangyi Deng (Zhejiang University), Xinfeng Li (Zhejiang University), Yanjiao Chen (Zhejiang University), Yijie Bai (Zhejiang University), Haiqin Weng (Ant Group), Yan Liu (Ant Group), Tao Wei (Ant Group), Wenyuan Xu (Zhejiang University)

Read More

Kronos: A Secure and Generic Sharding Blockchain Consensus with...

Yizhong Liu (Beihang University), Andi Liu (Beihang University), Yuan Lu (Institute of Software Chinese Academy of Sciences), Zhuocheng Pan (Beihang University), Yinuo Li (Xi’an Jiaotong University), Jianwei Liu (Beihang University), Song Bian (Beihang University), Mauro Conti (University of Padua)

Read More

Rethink Custom Transformers for Binary Analysis

Heng Yin, Professor, Department of Computer Science and Engineering, University of California, Riverside

Read More