Qiyang Song (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Heqing Huang (Institute of Information Engineering, Chinese Academy of Sciences), Xiaoqi Jia (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Yuanbo Xie (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Jiahao Cao (Institute for Network Sciences and Cyberspace, Tsinghua University)

Reentrancy vulnerabilities in Ethereum smart contracts have caused significant financial losses, prompting the creation of several automated reentrancy detectors. However, these detectors frequently yield a high rate of false positives due to coarse detection rules, often misclassifying contracts protected by anti-reentrancy patterns as vulnerable. Thus, there is a critical need for the development of specialized automated tools to assist these detectors in accurately identifying anti-reentrancy patterns. While existing code analysis techniques show promise for this specific task, they still face significant challenges in recognizing anti-reentrancy patterns. These challenges are primarily due to the complex and varied features of anti-reentrancy patterns, compounded by insufficient prior knowledge about these features.

This paper introduces AutoAR, an automated recognition system designed to explore and identify prevalent anti-reentrancy patterns in Ethereum contracts. AutoAR utilizes a specialized graph representation, RentPDG, combined with a data filtration approach, to effectively capture anti-reentrancy-related semantics from a large pool of contracts. Based on RentPDGs extracted from these contracts, AutoAR employs a recognition model that integrates a graph auto-encoder with a clustering technique, specifically tailored for precise anti-reentrancy pattern identification. Experimental results show AutoAR can assist existing detectors in identifying 12 prevalent anti-reentrancy patterns with 89% accuracy, and when integrated into the detection workflow, it significantly reduces false positives by over 85%.

View More Papers

Blackbox Fuzzing of Distributed Systems with Multi-Dimensional Inputs and...

Yonghao Zou (Beihang University and Peking University), Jia-Ju Bai (Beihang University), Zu-Ming Jiang (ETH Zurich), Ming Zhao (Arizona State University), Diyu Zhou (Peking University)

Read More

SNITCH: Leveraging IP Geolocation for Active VPN Detection

Tomer Schwartz (Data and Security Laboratory Fujitsu Research of Europe Ltd), Ofir Manor (Data and Security Laboratory Fujitsu Research of Europe Ltd), Andikan Otung (Data and Security Laboratory Fujitsu Research of Europe Ltd)

Read More

FUZZUER: Enabling Fuzzing of UEFI Interfaces on EDK-2

Connor Glosner (Purdue University), Aravind Machiry (Purdue University)

Read More

MineShark: Cryptomining Traffic Detection at Scale

Shaoke Xi (Zhejiang University), Tianyi Fu (Zhejiang University), Kai Bu (Zhejiang University), Chunling Yang (Zhejiang University), Zhihua Chang (Zhejiang University), Wenzhi Chen (Zhejiang University), Zhou Ma (Zhejiang University), Chongjie Chen (HANG ZHOU CITY BRAIN CO., LTD), Yongsheng Shen (HANG ZHOU CITY BRAIN CO., LTD), Kui Ren (Zhejiang University)

Read More