Beomjin Jin (Sungkyunkwan University), Eunsoo Kim (Sungkyunkwan University), Hyunwoo Lee (KENTECH), Elisa Bertino (Purdue University), Doowon Kim (University of Tennessee, Knoxville), Hyoungshick Kim (Sungkyunkwan University)

The sharing of Cyber Threat Intelligence (CTI) across organizations is gaining traction, as it can automate threat analysis and improve security awareness. However, limited empirical studies exist on the prevalent types of cybersecurity threat data and their effectiveness in mitigating cyber attacks. We propose a framework named CTI-Lense to collect and analyze the volume, timeliness, coverage, and quality of Structured Threat Information eXpression (STIX) data, a de facto standard CTI format, from a list of publicly available CTI sources. We collected about 6 million STIX data objects from October 31, 2014 to April 10, 2023 from ten data sources and analyzed their characteristics. Our analysis reveals that STIX data sharing has steadily increased in recent years, but the volume of STIX data shared is still relatively low to cover all cyber threats. Additionally, only a few types of threat data objects have been shared, with malware signatures and URLs accounting for more than 90% of the collected data. While URLs are usually shared promptly, with about 72% of URLs shared earlier than or on the same day as VirusTotal, the sharing of malware signatures is significantly slower. Furthermore, we found that 19% of the Threat actor data contained incorrect information, and only 0.09% of the Indicator data provided security rules to detect cyber attacks. Based on our findings, we recommend practical considerations for effective and scalable STIX data sharing among organizations.

View More Papers

Work-in-Progress: A Large-Scale Long-term Analysis of Online Fraud across...

Yi Han, Shujiang Wu, Mengmeng Li, Zixi Wang, and Pengfei Sun (F5)

Read More

The Advantages of Distributed TCAM Firewalls in Automotive Real-Time...

Evan Allen (Virginia Tech), Zeb Bowden (Virginia Tech Transportation Institute), J. Scot Ransbottom (Virginia Tech)

Read More

BliMe: Verifiably Secure Outsourced Computation with Hardware-Enforced Taint Tracking

Hossam ElAtali (University of Waterloo), Lachlan J. Gunn (Aalto University), Hans Liljestrand (University of Waterloo), N. Asokan (University of Waterloo, Aalto University)

Read More

TALISMAN: Tamper Analysis for Reference Monitors

Frank Capobianco (The Pennsylvania State University), Quan Zhou (The Pennsylvania State University), Aditya Basu (The Pennsylvania State University), Trent Jaeger (The Pennsylvania State University, University of California, Riverside), Danfeng Zhang (The Pennsylvania State University, Duke University)

Read More