Michael Rodler (University of Duisburg-Essen), Wenting Li (NEC Laboratories, Germany), Ghassan O. Karame (NEC Laboratories, Germany), Lucas Davi (University of Duisburg-Essen)

Recently, a number of existing blockchain systems have witnessed major bugs and vulnerabilities within smart contracts. Although the literature features a number of proposals for securing smart contracts, these proposals mostly focus on proving the correctness or absence of a certain type of vulnerability within a contract, but cannot protect deployed (legacy) contracts from being exploited.
In this paper, we address this problem in the context of re-entrancy exploits and propose a novel smart contract security technology, dubbed Sereum (Secure Ethereum), which protects existing, deployed contracts against re-entrancy attacks in a backwards compatible way based on run-time monitoring and validation. Sereum does neither require any modification nor any semantic knowledge of existing contracts. By means of implementation and evaluation using the Ethereum blockchain, we show that Sereum covers the actual execution flow of a smart contract to accurately detect and prevent
attacks with a false positive rate as small as 0.06% and with negligible
run-time overhead. As a by-product, we develop three advanced re-entrancy attacks to demonstrate the limitations of existing offline vulnerability analysis tools.

View More Papers

PeriScope: An Effective Probing and Fuzzing Framework for the...

Dokyung Song (University of California, Irvine), Felicitas Hetzelt (Technical University of Berlin), Dipanjan Das (University of California, Santa Barbara), Chad Spensky (University of California, Santa Barbara), Yeoul Na (University of California, Irvine), Stijn Volckaert (University of California, Irvine and KU Leuven), Giovanni Vigna (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara),…

Read More

TextBugger: Generating Adversarial Text Against Real-world Applications

Jinfeng Li (Zhejiang University), Shouling Ji (Zhejiang University), Tianyu Du (Zhejiang University), Bo Li (University of California, Berkeley), Ting Wang (Lehigh University)

Read More

NIC: Detecting Adversarial Samples with Neural Network Invariant Checking

Shiqing Ma (Purdue University), Yingqi Liu (Purdue University), Guanhong Tao (Purdue University), Wen-Chuan Lee (Purdue University), Xiangyu Zhang (Purdue University)

Read More

A Treasury System for Cryptocurrencies: Enabling Better Collaborative Intelligence

Bingsheng Zhang (Lancaster University), Roman Oliynykov (IOHK Ltd.), Hamed Balogun (Lancaster University)

Read More