Fan Sang (Georgia Institute of Technology), Jaehyuk Lee (Georgia Institute of Technology), Xiaokuan Zhang (George Mason University), Meng Xu (University of Waterloo), Scott Constable (Intel), Yuan Xiao (Intel), Michael Steiner (Intel), Mona Vij (Intel), Taesoo Kim (Georgia Institute of Technology)

Effectively mitigating side-channel attacks (SCAs) in Trusted Execution Environments (TEEs) remains challenging despite advances in existing defenses. Current detection-based defenses hinge on observing abnormal victim performance characteristics but struggle to detect attacks leaking smaller portions of the secret across multiple executions. Limitations of existing detection-based defenses stem from various factors, including the absence of a trusted microarchitectural data source in TEEs, low-quality available data, inflexibility of victim responses, and platform-specific constraints. We contend that the primary obstacles to effective detection techniques can be attributed to the lack of direct access to precise microarchitectural information within TEEs.

We propose SENSE, a solution that actively exposes underlying microarchitectural information to userspace TEEs. SENSE enables userspace software in TEEs to subscribe to fine-grained microarchitectural events and utilize the events as a means to contextualize the ongoing microarchitectural states. We initially demonstrate SENSE’s capability by applying it to defeat the state-of-the-art cache-based side-channel attacks. We conduct a comprehensive security analysis to ensure that SENSE does not leak more information than a system without it does. We prototype SENSE on a gem5-based emulator, and our evaluation shows that SENSE is secure, can effectively defeats cache SCAs, and incurs negligible performance overhead (1.2%) under benign situations.

View More Papers

When Cryptography Needs a Hand: Practical Post-Quantum Authentication for...

Geoff Twardokus (Rochester Institute of Technology), Nina Bindel (SandboxAQ), Hanif Rahbari (Rochester Institute of Technology), Sarah McCarthy (University of Waterloo)

Read More

GhostType: The Limits of Using Contactless Electromagnetic Interference to...

Qinhong Jiang (Zhejiang University), Yanze Ren (Zhejiang University), Yan Long (University of Michigan), Chen Yan (Zhejiang University), Yumai Sun (University of Michigan), Xiaoyu Ji (Zhejiang University), Kevin Fu (Northeastern University), Wenyuan Xu (Zhejiang University)

Read More

Improving the Robustness of Transformer-based Large Language Models with...

Lujia Shen (Zhejiang University), Yuwen Pu (Zhejiang University), Shouling Ji (Zhejiang University), Changjiang Li (Penn State), Xuhong Zhang (Zhejiang University), Chunpeng Ge (Shandong University), Ting Wang (Penn State)

Read More

Exploring Phishing Threats through QR Codes in Naturalistic Settings

Filipo Sharevski (DePaul University), Mattia Mossano, Maxime Fabian Veit, Gunther Schiefer, Melanie Volkamer (Karlsruhe Institute of Technology)

Read More