Tianyue Chu (IMDEA Networks Institute), Alvaro Garcia-Recuero (IMDEA Networks Institute), Costas Iordanou (Cyprus University of Technology), Georgios Smaragdakis (TU Delft), Nikolaos Laoutaris (IMDEA Networks Institute)

We present a Federated Learning (FL) based solution for building a distributed classifier capable of detecting URLs containing sensitive content, i.e., content related to categories such as health, political beliefs, sexual orientation, etc. Although such a classifier addresses the limitations of previous offline/centralised classifiers, it is still vulnerable to poisoning attacks from malicious users that may attempt to reduce the accuracy for benign users by disseminating faulty model updates. To guard against this, we develop a robust aggregation scheme based on subjective logic and residual-based attack detection. Employing a combination of theoretical analysis, trace-driven simulation, as well as experimental validation with a prototype and real users, we show that our classifier can detect sensitive content with high accuracy, learn new labels fast, and remain robust in view of poisoning attacks from malicious users, as well as imperfect input from non-malicious ones.

View More Papers

DiffCSP: Finding Browser Bugs in Content Security Policy Enforcement...

Seongil Wi (KAIST), Trung Tin Nguyen (CISPA Helmholtz Center for Information Security, Saarland University), Jihwan Kim (KAIST), Ben Stock (CISPA Helmholtz Center for Information Security), Sooel Son (KAIST)

Read More

Learning Automated Defense Strategies Using Graph-Based Cyber Attack Simulations

Jakob Nyber, Pontus Johnson (KTH Royal Institute of Technology)

Read More

Blaze: A Framework for Interprocedural Binary Analysis

Matthew Revelle, Matt Parker, Kevin Orr (Kudu Dynamics)

Read More

VASP: V2X Application Spoofing Platform

Mohammad Raashid Ansari, Jonathan Petit, Jean-Philippe Monteuuis, Cong Chen (Qualcomm Technologies, Inc.)

Read More