Jiawen Zhang (Zhejiang University), Xinpeng Yang (Zhejiang University), Lipeng He (University of Waterloo), Kejia Chen (Zhejiang University), Wen-jie Lu (Zhejiang University), Yinghao Wang (Zhejiang University), Xiaoyang Hou (Zhejiang University), Jian Liu (Zhejiang University), Kui Ren (Zhejiang University), Xiaohu Yang (Zhejiang University)

Secure transformer inference has emerged as a prominent research topic following the proliferation of ChatGPT. Existing solutions are typically interactive, involving substantial communication load and numerous interaction rounds between the client and the server.

In this paper, we propose NEXUS, the first non-interactive protocol for secure transformer inference. The protocol requires the client to engage in just one round of communication with the server during the whole inference process: submitting an encrypted input and receiving an encrypted result.
NEXUS introduces several novel primitives, including SIMD ciphertext compression/decompression, SIMD slot folding, and secure Argmax, which enable it to significantly surpass the state-of-the-art in communication while maintaining comparable runtime. Specifically, it reduces bandwidth consumption by 372.5$times$ compared to BOLT (Oakland~'24) and 53.6$times$ compared to Bumblebee (NDSS~'25). Furthermore, its non-interactive property allows for optimal hardware acceleration, with the GPU version achieving a 42.3$times$ speedup in runtime. This enables NEXUS to run inference on a BERT-based model in just 37.3 seconds, consuming only 164~MB of bandwidth.

View More Papers

Passive Inference Attacks on Split Learning via Adversarial Regularization

Xiaochen Zhu (National University of Singapore & Massachusetts Institute of Technology), Xinjian Luo (National University of Singapore & Mohamed bin Zayed University of Artificial Intelligence), Yuncheng Wu (Renmin University of China), Yangfan Jiang (National University of Singapore), Xiaokui Xiao (National University of Singapore), Beng Chin Ooi (National University of Singapore)

Read More

MALintent: Coverage Guided Intent Fuzzing Framework for Android

Ammar Askar (Georgia Institute of Technology), Fabian Fleischer (Georgia Institute of Technology), Christopher Kruegel (University of California, Santa Barbara), Giovanni Vigna (University of California, Santa Barbara), Taesoo Kim (Georgia Institute of Technology)

Read More

Poster: Securing IoT Edge Devices: Applying NIST IR 8259A...

Rahul Choutapally, Konika Reddy Saddikuti, Solomon Berhe (University of the Pacific)

Read More

TZ-DATASHIELD: Automated Data Protection for Embedded Systems via Data-Flow-Based...

Zelun Kong (University of Texas at Dallas), Minkyung Park (University of Texas at Dallas), Le Guan (University of Georgia), Ning Zhang (Washington University in St. Louis), Chung Hwan Kim (University of Texas at Dallas)

Read More