Jiawen Zhang (Zhejiang University), Xinpeng Yang (Zhejiang University), Lipeng He (University of Waterloo), Kejia Chen (Zhejiang University), Wen-jie Lu (Zhejiang University), Yinghao Wang (Zhejiang University), Xiaoyang Hou (Zhejiang University), Jian Liu (Zhejiang University), Kui Ren (Zhejiang University), Xiaohu Yang (Zhejiang University)

Secure transformer inference has emerged as a prominent research topic following the proliferation of ChatGPT. Existing solutions are typically interactive, involving substantial communication load and numerous interaction rounds between the client and the server.

In this paper, we propose NEXUS, the first non-interactive protocol for secure transformer inference. The protocol requires the client to engage in just one round of communication with the server during the whole inference process: submitting an encrypted input and receiving an encrypted result.
NEXUS introduces several novel primitives, including SIMD ciphertext compression/decompression, SIMD slot folding, and secure Argmax, which enable it to significantly surpass the state-of-the-art in communication while maintaining comparable runtime. Specifically, it reduces bandwidth consumption by 372.5$times$ compared to BOLT (Oakland~'24) and 53.6$times$ compared to Bumblebee (NDSS~'25). Furthermore, its non-interactive property allows for optimal hardware acceleration, with the GPU version achieving a 42.3$times$ speedup in runtime. This enables NEXUS to run inference on a BERT-based model in just 37.3 seconds, consuming only 164~MB of bandwidth.

View More Papers

DUMPLING: Fine-grained Differential JavaScript Engine Fuzzing

Liam Wachter (EPFL), Julian Gremminger (EPFL), Christian Wressnegger (Karlsruhe Institute of Technology (KIT)), Mathias Payer (EPFL), Flavio Toffalini (EPFL)

Read More

Revisiting EM-based Estimation for Locally Differentially Private Protocols

Yutong Ye (Institute of software, Chinese Academy of Sciences & Zhongguancun Laboratory, Beijing, PR.China.), Tianhao Wang (University of Virginia), Min Zhang (Institute of Software, Chinese Academy of Sciences), Dengguo Feng (Institute of Software, Chinese Academy of Sciences)

Read More

cozy: Comparative Symbolic Execution for Binary Programs

Caleb Helbling, Graham Leach-Krouse, Sam Lasser, Greg Sullivan (Draper)

Read More

Unleashing the Power of Generative Model in Recovering Variable...

Xiangzhe Xu (Purdue University), Zhuo Zhang (Purdue University), Zian Su (Purdue University), Ziyang Huang (Purdue University), Shiwei Feng (Purdue University), Yapeng Ye (Purdue University), Nan Jiang (Purdue University), Danning Xie (Purdue University), Siyuan Cheng (Purdue University), Lin Tan (Purdue University), Xiangyu Zhang (Purdue University)

Read More