Jonas Böhler (SAP Security Research), Florian Kerschbaum (University of Waterloo)

In distributed private learning, e.g., data analysis, machine learning, and enterprise benchmarking, it is commonplace for two parties with confidential data sets to compute statistics over their combined data. The median is an important robust statistical method used in enterprise benchmarking, e.g., companies compare typical employee salaries, insurance companies use median life expectancy to adjust insurance premiums, banks compare credit scores of their customers, and financial regulators estimate risks based on loan exposures.

The exact median can be computed securely, however, it leaks information about the private data. To protect the data sets, we securely compute a differentially private median over the joint data set via the exponential mechanism. The exponential mechanism has a runtime linear in the data universe size and efficiently sampling it is non-trivial. Local differential privacy, where each user shares locally perturbed data with an untrusted server, is often used in private learning but does not provide the same utility as the central model, where noise is only applied once by a trusted server.

We present an efficient secure computation of a differentially private median of the union of two large, confidential data sets. Our protocol has a runtime sublinear in the size of the data universe and utility like the central model without a trusted third party. We use dynamic programming with a static, i.e., data-independent, access pattern, achieving low complexity of the secure computation circuit. We provide a comprehensive evaluation with a large real-world data set with a practical runtime of less than 5 seconds for millions of records even with large network delay of 80ms.

View More Papers

ProtectIOn: Root-of-Trust for IO in Compromised Platforms

Aritra Dhar (ETH Zurich), Enis Ulqinaku (ETH Zurich), Kari Kostiainen (ETH Zurich), Srdjan Capkun (ETH Zurich)

Read More

DefRec: Establishing Physical Function Virtualization to Disrupt Reconnaissance of...

Hui Lin (University of Nevada, Reno), Jianing Zhuang (University of Nevada, Reno), Yih-Chun Hu (University of Illinois, Urbana-Champaign), Huayu Zhou (University of Nevada, Reno)

Read More

HYPER-CUBE: High-Dimensional Hypervisor Fuzzing

Sergej Schumilo (Ruhr-Universität Bochum), Cornelius Aschermann (Ruhr-Universität Bochum), Ali Abbasi (Ruhr-Universität Bochum), Simon Wörner (Ruhr-Universität Bochum), Thorsten Holz (Ruhr-Universität Bochum)

Read More

Decentralized Control: A Case Study of Russia

Reethika Ramesh (University of Michigan), Ram Sundara Raman (University of Michgan), Matthew Bernhard (University of Michigan), Victor Ongkowijaya (University of Michigan), Leonid Evdokimov (Independent), Anne Edmundson (Independent), Steven Sprecher (University of Michigan), Muhammad Ikram (Macquarie University), Roya Ensafi (University of Michigan)

Read More