Zhuoran Liu (Radboud university), Niels Samwel (Radboud University), Léo Weissbart (Radboud University), Zhengyu Zhao (Radboud University), Dirk Lauret (Radboud University), Lejla Batina (Radboud University), Martha Larson (Radboud University)

We introduce emph{screen gleaning}, a TEMPEST attack in which the screen of a mobile device is read without a visual line of sight, revealing sensitive information displayed on the phone screen. The screen gleaning attack uses an antenna and a software-defined radio (SDR) to pick up the electromagnetic signal that the device sends to the screen to display, e.g., a message with a security code. This special equipment makes it possible to recreate the signal as a gray-scale image, which we refer to as an emph{emage}. Here, we show that it can be used to read a security code. The screen gleaning attack is challenging because it is often impossible for a human viewer to interpret the emage directly. We show that this challenge can be addressed with machine learning, specifically, a deep learning classifier. Screen gleaning will become increasingly serious as SDRs and deep learning continue to rapidly advance. In this paper, we demonstrate the security code attack and we propose a testbed that provides a standard setup in which screen gleaning could be tested with different attacker models. Finally, we analyze the dimensions of screen gleaning attacker models and discuss possible countermeasures with the potential to address them.

View More Papers

“Lose Your Phone, Lose Your Identity”: Exploring Users’ Perceptions...

Michael Lutaaya, Hala Assal, Khadija Baig, Sana Maqsood, Sonia Chiasson (Carleton University)

Read More

Google/Apple Exposure Notification Due Diligence

Douglas Leith and Stephen Farrell (Trinity College Dublin)

Read More

(Short) WIP: End-to-End Analysis of Adversarial Attacks to Automated...

Hengyi Liang, Ruochen Jiao (Northwestern University), Takami Sato, Junjie Shen, Qi Alfred Chen (UC Irvine), and Qi Zhu (Northwestern University) Best Short Paper Award Winner!

Read More

Impact Evaluation of Falsified Data Attacks on Connected Vehicle...

Shihong Huang (University of Michigan, Ann Arbor), Yiheng Feng (Purdue University), Wai Wong (University of Michigan, Ann Arbor), Qi Alfred Chen (UC Irvine), Z. Morley Mao and Henry X. Liu (University of Michigan, Ann Arbor) Best Paper Award Runner-up ($200 cash prize)!

Read More