Kosei Akama (Keio University), Yoshimichi Nakatsuka (ETH Zurich), Masaaki Sato (Tokai University), Keisuke Uehara (Keio University)

Preventing abusive activities caused by adversaries accessing online services at a rate exceeding that expected by websites has become an ever-increasing problem. CAPTCHAs and SMS authentication are widely used to provide a solution by implementing rate limiting, although they are becoming less effective, and some are considered privacy-invasive. In light of this, many studies have proposed better rate-limiting systems that protect the privacy of legitimate users while blocking malicious actors. However, they suffer from one or more shortcomings: (1) assume trust in the underlying hardware and (2) are vulnerable to side-channel attacks.
Motivated by the aforementioned issues, this paper proposes Scrappy: SeCure Rate Assuring Protocol with PrivacY. Scrappy allows clients to generate unforgeable yet unlinkable rate-assuring proofs, which provides the server with cryptographic guarantees that the client is not misbehaving. We design Scrappy using a combination of DAA and hardware security devices. Scrappy is implemented over three types of devices, including one that can immediately be deployed in the real world. Our baseline evaluation shows that the end-to-end latency of Scrappy is minimal, taking only 0.32 seconds, and uses only 679 bytes of bandwidth when transferring necessary data. We also conduct an extensive security evaluation, showing that the rate-limiting capability of Scrappy is unaffected even if the hardware security device is compromised.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 104 ) ) ) [post__not_in] => Array ( [0] => 16908 ) )

The impact of data-heavy, post-quantum TLS 1.3 on the...

Panos Kampanakis and Will Childs-Klein (AWS)

Read More

DynPRE: Protocol Reverse Engineering via Dynamic Inference

Zhengxiong Luo (Tsinghua University), Kai Liang (Central South University), Yanyang Zhao (Tsinghua University), Feifan Wu (Tsinghua University), Junze Yu (Tsinghua University), Heyuan Shi (Central South University), Yu Jiang (Tsinghua University)

Read More

Merge/Space: A Security Testbed for Satellite Systems

M. Patrick Collins (USC Information Sciences Institute), Alefiya Hussain (USC Information Sciences Institute), J.P. Walters (USC Information Sciences Institute), Calvin Ardi (USC Information Sciences Institute), Chris Tran (USC Information Sciences Institute), Stephen Schwab (USC Information Sciences Institute)

Read More

Eavesdropping on Controller Acoustic Emanation for Keystroke Inference Attack...

Shiqing Luo (George Mason University), Anh Nguyen (George Mason University), Hafsa Farooq (Georgia State University), Kun Sun (George Mason University), Zhisheng Yan (George Mason University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)