Xuanji Meng (Tsinghua University), Xiao Sui (Shandong University), Zhaoxin Yang (Tsinghua University), Kang Rong (Blockchain Platform Division,Ant Group), Wenbo Xu (Blockchain Platform Division,Ant Group), Shenglong Chen (Blockchain Platform Division,Ant Group), Ying Yan (Blockchain Platform Division,Ant Group), Sisi Duan (Tsinghua University)

We present Rondo, a scalable and reconfiguration-friendly distributed randomness beacon (DRB) protocol in the partially synchronous model. Rondo is the first DRB protocol that is built from batched asynchronous verifiable secret sharing (bAVSS) and meanwhile avoids the high $O(n^3)$ message cost, where $n$ is the number of nodes. Our key contribution lies in the introduction of a new variant of bAVSS called batched asynchronous verifiable secret sharing with partial output (bAVSS-PO). bAVSS-PO is a weaker primitive than bAVSS but allows us to build a secure and more scalable DRB protocol. We propose a bAVSS-PO protocol Breeze. Breeze achieves the optimal $O(n)$ messages for the sharing stage and allows Rondo to offer better scalability than prior DRB protocols.
Additionally, to support the reconfiguration, we introduce Rondo-BFT, a dynamic and partially synchronous Byzantine fault-tolerant protocol inspired by Dyno (S&P 2022). Unlike Dyno, Rondo-BFT provides a communication pattern that generates randomness beacon output periodically, making it well-suited for DRB applications.

We implement our protocols and evaluate the performance on Amazon EC2 using up to 91 instances. Our evaluation results show that Rondo achieves higher throughput than existing works and meanwhile offers better scalability, where the performance does not degrade as significantly as $n$ grows.

View More Papers

DShield: Defending against Backdoor Attacks on Graph Neural Networks...

Hao Yu (National University of Defense Technology), Chuan Ma (Chongqing University), Xinhang Wan (National University of Defense Technology), Jun Wang (National University of Defense Technology), Tao Xiang (Chongqing University), Meng Shen (Beijing Institute of Technology, Beijing, China), Xinwang Liu (National University of Defense Technology)

Read More

Transparency or Information Overload? Evaluating Users’ Comprehension and Perceptions...

Xiaoyuan Wu (Carnegie Mellon University), Lydia Hu (Carnegie Mellon University), Eric Zeng (Carnegie Mellon University), Hana Habib (Carnegie Mellon University), Lujo Bauer (Carnegie Mellon University)

Read More

Work-in-Progress: Uncovering Dark Patterns: A Longitudinal Study of Cookie...

Zihan Qu (Johns Hopkins University), Xinyi Qu (University College London), Xin Shen, Zhen Liang, and Jianjia Yu (Johns Hopkins University)

Read More

LeoCommon – A Ground Station Observatory Network for LEO...

Eric Jedermann, Martin Böh (University of Kaiserslautern), Martin Strohmeier (armasuisse Science & Technology), Vincent Lenders (Cyber-Defence Campus, armasuisse Science & Technology), Jens Schmitt (University of Kaiserslautern)

Read More