Shridatt Sugrim (Rutgers University), Can Liu (Rutgers University), Meghan McLean (Rutgers University), Janne Lindqvist (Rutgers University)

Research has produced many types of authentication systems that use machine learning. However, there is no consistent approach for reporting performance metrics and the reported metrics are inadequate. In this work, we show that several of the common metrics used for reporting performance, such as maximum accuracy (ACC), equal error rate (EER) and area under the ROC curve (AUROC), are inherently flawed. These common metrics hide the details of the inherent trade-offs a system must make when implemented. Our findings show that current metrics give no insight into how system performance degrades outside the ideal conditions in which they were designed. We argue that adequate performance reporting must be provided to enable meaningful evaluation and that current, commonly used approaches fail in this regard. We present the unnormalized frequency count of scores (FCS) to demonstrate the mathematical underpinnings that lead to these failures and show how they can be avoided. The FCS can be used to augment the performance reporting to enable comparison across systems in a visual way. When reported with the Receiver Operating Characteristics curve (ROC), these two metrics provide a solution to the limitations of currently reported metrics. Finally, we show how to use the FCS and ROC metrics to evaluate and compare different authentication systems.

View More Papers

Sereum: Protecting Existing Smart Contracts Against Re-Entrancy Attacks

Michael Rodler (University of Duisburg-Essen), Wenting Li (NEC Laboratories, Germany), Ghassan O. Karame (NEC Laboratories, Germany), Lucas Davi (University of Duisburg-Essen)

Read More

Cracking the Wall of Confinement: Understanding and Analyzing Malicious...

Eihal Alowaisheq (Indiana University, King Saud University), Peng Wang (Indiana University), Sumayah Alrwais (King Saud University), Xiaojing Liao (Indiana University), XiaoFeng Wang (Indiana University), Tasneem Alowaisheq (Indiana University, King Saud University), Xianghang Mi (Indiana University), Siyuan Tang (Indiana University), Baojun Liu (Tsinghua University)

Read More

Mind Your Own Business: A Longitudinal Study of Threats...

Platon Kotzias (IMDEA Software Institute, Universidad Politécnica de Madrid), Leyla Bilge (Symantec Research Labs), Pierre-Antoine Vervier (Symantec Research Labs), Juan Caballero (IMDEA Software Institute)

Read More

NIC: Detecting Adversarial Samples with Neural Network Invariant Checking

Shiqing Ma (Purdue University), Yingqi Liu (Purdue University), Guanhong Tao (Purdue University), Wen-Chuan Lee (Purdue University), Xiangyu Zhang (Purdue University)

Read More