Wentao Dong (City University of Hong Kong), Peipei Jiang (Wuhan University; City University of Hong Kong), Huayi Duan (ETH Zurich), Cong Wang (City University of Hong Kong), Lingchen Zhao (Wuhan University), Qian Wang (Wuhan University)

Anonymous broadcast systems, which allow users to post messages on a public bulletin board without revealing their identities, have been of persistent interest over the years.
Recent designs utilizing multi-party computation (MPC) techniques have shown competitive computational efficiency (CCS'20, NDSS'22, PETS'23).
However, these systems still fall short in communication overhead, which also dominates the overall performance.
Besides, they fail to adequately address threats from misbehaving users, such as repeatedly spamming the system with inappropriate, illegal content.
These tangible issues usually undermine the practical adoption of anonymous systems.

This work introduces _Gyges_, an MPC-based anonymous broadcast system that minimizes its inter-server communication while reconciling critical anonymity and accountability guarantees.
At the crux of _Gyges_ lies an honest-majority four-party secret-shared relay.
These relay parties jointly execute two key protocols: 1) a "silent shuffling" protocol that requires no online communication but relies solely on non-interactive, local computations to unlink users from their messages, thereby ensuring sender anonymity; 2) a companion fast and lean tracing protocol capable of relinking a specific shuffled message back to its originator when the content severely violates moderation policy, without jeopardizing others' anonymity guarantees.
Additionally, _Gyges_ adheres to the private robustness to resist potential malicious disruptions, guaranteeing output delivery while preserving sender anonymity.
To better support a large user base, the system also supports both vertical and horizontal scaling.
Our evaluation results show that _Gyges_'s communication-efficient shuffle designs outperform state-of-the-art MPC-based anonymous broadcast solutions, such as Clarion (NDSS'22) and RPM (PETS'23), while its shared trace technique can swiftly track down the misbehaving users (when necessary), giving orders of magnitude cost reductions compared to traceable mixnets (PETS'24) that offers similar capabilities.

View More Papers

Unleashing the Power of Generative Model in Recovering Variable...

Xiangzhe Xu (Purdue University), Zhuo Zhang (Purdue University), Zian Su (Purdue University), Ziyang Huang (Purdue University), Shiwei Feng (Purdue University), Yapeng Ye (Purdue University), Nan Jiang (Purdue University), Danning Xie (Purdue University), Siyuan Cheng (Purdue University), Lin Tan (Purdue University), Xiangyu Zhang (Purdue University)

Read More

Dissecting Payload-based Transaction Phishing on Ethereum

Zhuo Chen (Zhejiang University), Yufeng Hu (Zhejiang University), Bowen He (Zhejiang University), Dong Luo (Zhejiang University), Lei Wu (Zhejiang University), Yajin Zhou (Zhejiang University)

Read More

RContainer: A Secure Container Architecture through Extending ARM CCA...

Qihang Zhou (Institute of Information Engineering, Chinese Academy of Sciences), Wenzhuo Cao (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyberspace Security, University of Chinese Academy of Sciences), Xiaoqi Jia (Institute of Information Engineering, Chinese Academy of Sciences), Peng Liu (The Pennsylvania State University, USA), Shengzhi Zhang (Department of Computer Science, Metropolitan College,…

Read More

The Midas Touch: Triggering the Capability of LLMs for...

Yi Yang (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Jinghua Liu (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Kai Chen (Institute of Information Engineering, Chinese Academy of…

Read More