Yutong Ye (Institute of software, Chinese Academy of Sciences & Zhongguancun Laboratory, Beijing, PR.China.), Tianhao Wang (University of Virginia), Min Zhang (Institute of Software, Chinese Academy of Sciences), Dengguo Feng (Institute of Software, Chinese Academy of Sciences)

This paper investigates the fundamental estimation problem in local differential privacy (LDP). We categorize existing estimation methods into two approaches, the unbiased estimation approach, which, under LDP, often gives unreasonable results (negative results or the sum of estimation does not equal to the total number of participating users), due to the excessive amount of noise added in LDP, and the maximal likelihood estimation (MLE)-based approach, which, can give reasonable results, but often suffers from the overfitting issue. To address this challenge, we propose a reduction framework inspired by Gaussian mixture models (GMM). We adapt the reduction framework to LDP estimation by transferring the estimation problem to the density estimation problem of the mixture model. Through the merging operation of the smallest weight component in this mixture model, the EM algorithm converges faster and produces a more robust distribution estimation. We show this framework offers a general and efficient way of modeling various LDP protocols. Through extensive evaluations, we demonstrate the superiority of our approach in terms of mean estimation, categorical distribution estimation, and numerical distribution estimation.

View More Papers

An Empirical Study on Fingerprint API Misuse with Lifecycle...

Xin Zhang (Fudan University), Xiaohan Zhang (Fudan University), Zhichen Liu (Fudan University), Bo Zhao (Fudan University), Zhemin Yang (Fudan University), Min Yang (Fudan University)

Read More

TrajDeleter: Enabling Trajectory Forgetting in Offline Reinforcement Learning Agents

Chen Gong (University of Vriginia), Kecen Li (Chinese Academy of Sciences), Jin Yao (University of Virginia), Tianhao Wang (University of Virginia)

Read More

What’s Done Is Not What’s Claimed: Detecting and Interpreting...

Chang Yue (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Kai Chen (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Zhixiu Guo (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Jun Dai, Xiaoyan Sun (Department of Computer Science, Worcester Polytechnic Institute), Yi Yang (Institute of Information Engineering, Chinese Academy…

Read More

A Systematic Evaluation of Novel and Existing Cache Side...

Fabian Rauscher (Graz University of Technology), Carina Fiedler (Graz University of Technology), Andreas Kogler (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More