Kostas Drakonakis (FORTH), Sotiris Ioannidis (Technical University of Crete), Jason Polakis (University of Illinois at Chicago)

Black-box web vulnerability scanners are invaluable for security researchers and practitioners. Despite recent approaches tackling emph{some} of the inherent limitations of scanners, many have not sufficiently evolved alongside web browsers and applications, and often lack the capabilities for handling the inherent challenges of navigating and interacting with modern web applications. Instead of building an alternative scanner that could naturally only incorporate a limited set of the wide range of vulnerability-finding capabilities offered by the multitude of existing scanners, in this paper we propose an entirely different strategy. We present ReScan, a emph{scanner-agnostic} middleware framework that emph{transparently} enhances scanners' capabilities by mediating their interaction with web applications in a realistic and robust manner, using an orchestrated, fully-fledged modern browser. In essence, our framework can be used in conjunction with emph{any} vulnerability scanner, thus allowing users to benefit from the capabilities of existing and future scanners. Our extensible and modular framework includes a collection of enhancement techniques that address limitations and obstacles commonly faced by state-of-the-art scanners. Our experimental evaluation demonstrates that despite the considerable (and expected) overhead introduced by a fully-fledged browser, our framework significantly improves the code coverage achieved by popular scanners (168% on average), resulting in a 66% and 161% increase in the number of reflected and stored XSS vulnerabilities detected, respectively.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 66 ) ) ) [post__not_in] => Array ( [0] => 13201 ) )

Fusion: Efficient and Secure Inference Resilient to Malicious Servers

Caiqin Dong (Jinan University), Jian Weng (Jinan University), Jia-Nan Liu (Jinan University), Yue Zhang (Jinan University), Yao Tong (Guangzhou Fongwell Data Limited Company), Anjia Yang (Jinan University), Yudan Cheng (Jinan University), Shun Hu (Jinan University)

Read More

QPEP in the Real World: A Testbed for Secure...

Julian Huwyler (ETH Zurich), James Pavur (University of Oxford), Giorgio Tresoldi and Martin Strohmeier (Cyber-Defence Campus) Presenter: Martin Strohmeier

Read More

I Still Know What You Watched Last Sunday: Privacy...

Carlotta Tagliaro (TU Wien), Florian Hahn (University of Twente), Riccardo Sepe (Guess Europe Sagl), Alessio Aceti (Sababa Security SpA), Martina Lindorfer (TU Wien)

Read More

Folk Models of Misinformation on Social Media

Filipo Sharevski (DePaul University), Amy Devine (DePaul University), Emma Pieroni (DePaul University), Peter Jachim (DePaul University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)