Linkai Zheng (Tsinghua University), Xiang Li (Tsinghua University), Chuhan Wang (Tsinghua University), Run Guo (Tsinghua University), Haixin Duan (Tsinghua University; Quancheng Laboratory), Jianjun Chen (Tsinghua University; Zhongguancun Laboratory), Chao Zhang (Tsinghua University; Zhongguancun Laboratory), Kaiwen Shen (Tsinghua University)

Content Delivery Networks (CDNs) are ubiquitous middleboxes designed to enhance the performance of hosted websites and shield them from various attacks. Numerous notable studies show that CDNs modify a client's request when forwarding it to the original server. Multiple inconsistencies in this forwarding operation have been found to potentially result in security vulnerabilities like DoS attacks. Nonetheless, existing research lacks a systematic approach to studying CDN forwarding request inconsistencies.

In this work, we present ReqsMiner, an innovative fuzzing framework developed to discover previously unexamined inconsistencies in CDN forwarding requests. The framework uses techniques derived from reinforcement learning to generate valid test cases, even with minimal feedback, and incorporates real field values into the grammar-based fuzzer. With the help of ReqsMiner, we comprehensively test 22 major CDN providers and uncover a wealth of hitherto unstudied CDN forwarding request inconsistencies. Moreover, the application of specialized analyzers enables ReqsMiner to extend its capabilities, evolving into a framework capable of detecting specific types of attacks. By extension, our work further identifies three novel types of HTTP amplification DoS attacks and uncovers 74 new potential DoS vulnerabilities with an amplification factor that can reach up to 2,000 generally, and even 1,920,000 under specific conditions. The vulnerabilities detected were responsibly disclosed to the affected CDN vendors, and mitigation suggestions were proposed. Our work contributes to fortifying CDN security, thereby enhancing their resilience against malicious attacks and preventing misuse.

View More Papers

AdvCAPTCHA: Creating Usable and Secure Audio CAPTCHA with Adversarial...

Hao-Ping (Hank) Lee (Carnegie Mellon University), Wei-Lun Kao (National Taiwan University), Hung-Jui Wang (National Taiwan University), Ruei-Che Chang (University of Michigan), Yi-Hao Peng (Carnegie Mellon University), Fu-Yin Cherng (National Chung Cheng University), Shang-Tse Chen (National Taiwan University)

Read More

BGP-iSec: Improved Security of Internet Routing Against Post-ROV Attacks

Cameron Morris (University of Connecticut), Amir Herzberg (University of Connecticut), Bing Wang (University of Connecticut), Samuel Secondo (University of Connecticut)

Read More

Compensating Removed Frequency Components: Thwarting Voice Spectrum Reduction Attacks

Shu Wang (George Mason University), Kun Sun (George Mason University), Qi Li (Tsinghua University)

Read More

Evaluating Disassembly Ground Truth Through Dynamic Tracing (abstract)

Lambang Akbar (National University of Singapore), Yuancheng Jiang (National University of Singapore), Roland H.C. Yap (National University of Singapore), Zhenkai Liang (National University of Singapore), Zhuohao Liu (National University of Singapore)

Read More