Stefano Calzavara (Università Ca' Foscari Venezia), Tobias Urban (Institute for Internet Security and Ruhr University Bochum), Dennis Tatang (Ruhr University Bochum), Marius Steffens (CISPA Helmholtz Center for Information Security), Ben Stock (CISPA Helmholtz Center for Information Security)

Over the years, browsers have adopted an ever-increasing number of client-enforced security policies deployed by means of HTTP headers. Such mechanisms are fundamental for web application security, and usually deployed on a per-page basis. This, however, enables inconsistencies, as different pages within the same security boundaries (in form of origins or sites) can express conflicting security requirements. In this paper, we formalize inconsistencies for cookie security attributes, CSP, and HSTS, and then quantify the magnitude and impact of inconsistencies at scale by crawling 15,000 popular sites. We show numerous sites endanger their own security by omission or misconfiguration of the aforementioned mechanisms, which lead to unnecessary exposure to XSS, cookie theft and HSTS deactivation. We then use our data to analyse to which extent the recent *Origin Policy* proposal can fix the problem of inconsistencies. Unfortunately, we conclude that the current Origin Policy design suffers from major shortcomings which limit its practical applicability to address security inconsistencies, while catering to the need of real-world sites. Based on these insights, we propose Site Policy, an extension of Origin Policy designed to overcome the shortcomings of Origin Policy and to make any insecurity explicit.

View More Papers

Censored Planet: An Internet-wide, Longitudinal Censorship Observatory

R. Sundara Raman, P. Shenoy, K. Kohls, and R. Ensafi (University of Michigan)

Read More

XDA: Accurate, Robust Disassembly with Transfer Learning

Kexin Pei (Columbia University), Jonas Guan (University of Toronto), David Williams-King (Columbia University), Junfeng Yang (Columbia University), Suman Jana (Columbia University)

Read More

Low-risk Privacy-preserving Electric Vehicle Charging with Payments

Andreas Unterweger, Fabian Knirsch, Clemens Brunner and Dominik Engel (Center for Secure Energy Informatics, Salzburg University of Applied Sciences, Puch bei Hallein, Austria)

Read More

FlowLens: Enabling Efficient Flow Classification for ML-based Network Security...

Diogo Barradas (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Nuno Santos (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Luis Rodrigues (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Salvatore Signorello (LASIGE, Faculdade de Ciências, Universidade de Lisboa), Fernando M. V. Ramos (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), André Madeira (INESC-ID, Instituto Superior Técnico, Universidade de…

Read More