Maximilian von Tschirschnitz (Technical University of Munich), Ludwig Peuckert (Technical University of Munich), Moritz Buhl (Technical University of Munich), Jens Grossklags (Technical University of Munich)

Previous works have shown that Bluetooth is susceptible to so-called Method Confusion attacks. These attacks manipulate devices into conducting conflicting key establishment methods, leading to compromised keys. An increasing amount of security-sensitive applications, like payment terminals, organizational asset tracking systems and conferencing technologies now rely on the availability of a technology like Bluetooth.
It is thus an urgent goal to find and validate a mitigation to these attacks or to provide an appropriate replacement for Bluetooth without introducing additional requirements
that exclude device or user groups.
Despite recent solution proposals, existing threat models overlook certain attack vectors or dismiss important scenarios and consequently suffer under new variants of Method Confusion.

We first propose an extended threat model that appreciates the root issue of Method Confusion and also considers multiple pairing attempts and one-sided pairings as security risks.
Evaluating existing solution proposals with our threat model, we are able to detect known Method Confusion attacks, and identify new vulnerabilities in previous solution proposals.
We demonstrate the viability of these attacks on real-world Bluetooth devices. We further discuss a novel solution approach offering enhanced security, while maintaining compatibility with existing hardware and Bluetooth user behavior.
We conduct a formal security proof of our proposal and implement it on commonplace Bluetooth hardware, positioning it as the currently most promising update proposal for Bluetooth.

View More Papers

Formally Verifying the Newest Versions of the GNSS-centric TESLA...

Ioana Boureanu, Stephan Wesemeyer (Surrey Centre for Cyber Security, University of Surrey)

Read More

Can a Cybersecurity Question Answering Assistant Help Change User...

Lea Duesterwald (Carnegie Mellon University), Ian Yang (Carnegie Mellon University), Norman Sadeh (Carnegie Mellon University)

Read More

Tweezers: A Framework for Security Event Detection via Event...

Jian Cui (Indiana University), Hanna Kim (KAIST), Eugene Jang (S2W Inc.), Dayeon Yim (S2W Inc.), Kicheol Kim (S2W Inc.), Yongjae Lee (S2W Inc.), Jin-Woo Chung (S2W Inc.), Seungwon Shin (KAIST), Xiaojing Liao (Indiana University)

Read More

VoiceRadar: Voice Deepfake Detection using Micro-Frequency and Compositional Analysis

Kavita Kumari (Technical University of Darmstadt), Maryam Abbasihafshejani (University of Texas at San Antonio), Alessandro Pegoraro (Technical University of Darmstadt), Phillip Rieger (Technical University of Darmstadt), Kamyar Arshi (Technical University of Darmstadt), Murtuza Jadliwala (University of Texas at San Antonio), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More