Eduardo Chielle (New York University Abu Dhabi), Michail Maniatakos (New York University Abu Dhabi)

A Private Set Intersection (PSI) protocol is a cryptographic method allowing two parties, each with a private set, to determine the intersection of their sets without revealing any information about their entries except for the intersection itself. While extensive research has focused on PSI protocols, most studies have centered on scenarios where two parties possess sets of similar sizes, assuming a semi-honest threat model.
However, when the sizes of the parties' sets differ significantly, a generalized solution tends to underperform compared to a specialized one, as recent research has demonstrated. Additionally, conventional PSI protocols are typically designed for a single execution, requiring the entire protocol to be re-executed for each set intersection. This approach is suboptimal for applications such as URL denylisting and email filtering, which may involve multiple set intersections of small sets against a large set (e.g., one for each email received).
In this study, we propose a novel PSI protocol optimized for the recurrent setting where parties have unbalanced set sizes. We implement our protocol using Levelled Fully Homomorphic Encryption and Cuckoo hashing, and introduce several optimizations to ensure real-time performance. By utilizing the Microsoft SEAL library, we demonstrate that our protocol can perform private set intersections in 20 ms and 240 ms on 10 Gbps and 100 Mbps networks, respectively.
Compared to existing solutions, our protocol offers significant improvements, reducing set intersection times by one order of magnitude on slower networks and by two orders of magnitude on faster networks.

View More Papers

VeriBin: Adaptive Verification of Patches at the Binary Level

Hongwei Wu (Purdue University), Jianliang Wu (Simon Fraser University), Ruoyu Wu (Purdue University), Ayushi Sharma (Purdue University), Aravind Machiry (Purdue University), Antonio Bianchi (Purdue University)

Read More

Security Advice on Content Filtering and Circumvention for Parents...

Ran Elgedawy (The University of Tennessee, Knoxville), John Sadik (The University of Tennessee, Knoxville), Anuj Gautam (The University of Tennessee, Knoxville), Trinity Bissahoyo (The University of Tennessee, Knoxville), Christopher Childress (The University of Tennessee, Knoxville), Jacob Leonard (The University of Tennessee, Knoxville), Clay Shubert (The University of Tennessee, Knoxville), Scott Ruoti (The University of Tennessee,…

Read More

ABElity: Attribute Based Encryption for Securing RIC Communication in...

K Sowjanya (Indian Institute of Technology Delhi), Rahul Saini (Eindhoven University of Technology), Dhiman Saha (Indian Institute of Technology Bhilai), Kishor Joshi (Eindhoven University of Technology), Madhurima Das (Indian Institute of Technology Delhi)

Read More

Generating API Parameter Security Rules with LLM for API...

Jinghua Liu (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Yi Yang (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Kai Chen (Institute of Information Engineering, Chinese Academy of…

Read More