Eduardo Chielle (New York University Abu Dhabi), Michail Maniatakos (New York University Abu Dhabi)

A Private Set Intersection (PSI) protocol is a cryptographic method allowing two parties, each with a private set, to determine the intersection of their sets without revealing any information about their entries except for the intersection itself. While extensive research has focused on PSI protocols, most studies have centered on scenarios where two parties possess sets of similar sizes, assuming a semi-honest threat model.
However, when the sizes of the parties' sets differ significantly, a generalized solution tends to underperform compared to a specialized one, as recent research has demonstrated. Additionally, conventional PSI protocols are typically designed for a single execution, requiring the entire protocol to be re-executed for each set intersection. This approach is suboptimal for applications such as URL denylisting and email filtering, which may involve multiple set intersections of small sets against a large set (e.g., one for each email received).
In this study, we propose a novel PSI protocol optimized for the recurrent setting where parties have unbalanced set sizes. We implement our protocol using Levelled Fully Homomorphic Encryption and Cuckoo hashing, and introduce several optimizations to ensure real-time performance. By utilizing the Microsoft SEAL library, we demonstrate that our protocol can perform private set intersections in 20 ms and 240 ms on 10 Gbps and 100 Mbps networks, respectively.
Compared to existing solutions, our protocol offers significant improvements, reducing set intersection times by one order of magnitude on slower networks and by two orders of magnitude on faster networks.

View More Papers

RAIFLE: Reconstruction Attacks on Interaction-based Federated Learning with Adversarial...

Dzung Pham (University of Massachusetts Amherst), Shreyas Kulkarni (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst)

Read More

Explanation as a Watermark: Towards Harmless and Multi-bit Model...

Shuo Shao (Zhejiang University), Yiming Li (Zhejiang University), Hongwei Yao (Zhejiang University), Yiling He (Zhejiang University), Zhan Qin (Zhejiang University), Kui Ren (Zhejiang University)

Read More

Too Subtle to Notice: Investigating Executable Stack Issues in...

Hengkai Ye (The Pennsylvania State University), Hong Hu (The Pennsylvania State University)

Read More

dAngr: Lifting Software Debugging to a Symbolic Level

Dairo de Ruck, Jef Jacobs, Jorn Lapon, Vincent Naessens (DistriNet, KU Leuven, 3001 Leuven, Belgium)

Read More