Eduardo Chielle (New York University Abu Dhabi), Michail Maniatakos (New York University Abu Dhabi)

A Private Set Intersection (PSI) protocol is a cryptographic method allowing two parties, each with a private set, to determine the intersection of their sets without revealing any information about their entries except for the intersection itself. While extensive research has focused on PSI protocols, most studies have centered on scenarios where two parties possess sets of similar sizes, assuming a semi-honest threat model.
However, when the sizes of the parties' sets differ significantly, a generalized solution tends to underperform compared to a specialized one, as recent research has demonstrated. Additionally, conventional PSI protocols are typically designed for a single execution, requiring the entire protocol to be re-executed for each set intersection. This approach is suboptimal for applications such as URL denylisting and email filtering, which may involve multiple set intersections of small sets against a large set (e.g., one for each email received).
In this study, we propose a novel PSI protocol optimized for the recurrent setting where parties have unbalanced set sizes. We implement our protocol using Levelled Fully Homomorphic Encryption and Cuckoo hashing, and introduce several optimizations to ensure real-time performance. By utilizing the Microsoft SEAL library, we demonstrate that our protocol can perform private set intersections in 20 ms and 240 ms on 10 Gbps and 100 Mbps networks, respectively.
Compared to existing solutions, our protocol offers significant improvements, reducing set intersection times by one order of magnitude on slower networks and by two orders of magnitude on faster networks.

View More Papers

“Do We Call Them That? Absolutely Not.”: Juxtaposing the...

Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Luca Favaro (Technical University of Munich), and Florian Matthes (Technical University of Munich)

Read More

WIP: Towards Privacy Compliance by Design in the Matter...

Yichen Liu (Indiana University Bloomington), Jingwen Yan (Clemson University), Song Liao (Texas Tech University), Long Cheng (Clemson University), Luyi Xing (Indiana University Bloomington)

Read More

Sheep's Clothing, Wolf's Data: Detecting Server-Induced Client Vulnerabilities in...

Fangming Gu (Institute of Information Engineering, Chinese Academy of Sciences), Qingli Guo (Institute of Information Engineering, Chinese Academy of Sciences), Jie Lu (Institute of Computing Technology, Chinese Academy of Sciences), Qinghe Xie (Institute of Information Engineering, Chinese Academy of Sciences), Beibei Zhao (Institute of Information Engineering, Chinese Academy of Sciences), Kangjie Lu (University of Minnesota),…

Read More

Fuzzing Space Communication Protocols

Stephan Havermans (IMDEA Software Institute), Lars Baumgaertner, Jussi Roberts, Marcus Wallum (European Space Agency), Juan Caballero (IMDEA Software Institute)

Read More