Harry W. H. Wong (The Chinese University of Hong Kong), Jack P. K. Ma (The Chinese University of Hong Kong), Hoover H. F. Yin (The Chinese University of Hong Kong), Sherman S. M. Chow (The Chinese University of Hong Kong)

Threshold ECDSA recently regained popularity due to decentralized applications such as DNSSEC and cryptocurrency asset custody. Latest (communication-optimizing) schemes often assume all n or at least n' >= t participating users remain honest throughout the pre-signing phase, essentially degenerating to n'-out-of-n' multiparty signing instead of t-out-of-n threshold signing. When anyone misbehaves, all signers must restart from scratch, rendering prior computation and communication in vain. This hampers the adoption of threshold ECDSA in time-critical situations and confines its use to a small signing committee.

To mitigate such denial-of-service vulnerabilities prevalent in state-of-the-art, we propose a robust threshold ECDSA scheme that achieves the t-out-of-n threshold flexibility "for real" throughout the whole pre-signing and signing phases without assuming an honest majority. Our scheme is desirable when computational resources are scarce and in a decentralized setting where faults are easier to be induced. Our design features 4-round pre-signing, O(n) cheating identification, and self-healing machinery over distributive shares. Prior arts mandate abort after an O(n^2)-cost identification, albeit with 3-round pre-signing (Canetti et al., CCS '20), or O(n) using 6 rounds (Castagnos et al., TCS '23). Empirically, our scheme saves up to ~30% of the communication cost, depending on at which stage the fault occurred.

View More Papers

Blaze: A Framework for Interprocedural Binary Analysis

Matthew Revelle, Matt Parker, Kevin Orr (Kudu Dynamics)

Read More

Preventing SIM Box Fraud Using Device Model Fingerprinting

BeomSeok Oh (KAIST), Junho Ahn (KAIST), Sangwook Bae (KAIST), Mincheol Son (KAIST), Yonghwa Lee (KAIST), Min Suk Kang (KAIST), Yongdae Kim (KAIST)

Read More

Improving In-vehicle Networks Intrusion Detection Using On-Device Transfer Learning

Sampath Rajapaksha (Robert Gordon University), Harsha Kalutarage (Robert Gordon University), M.Omar Al-Kadri (Birmingham City University), Andrei Petrovski (Robert Gordon University), Garikayi Madzudzo (Horiba Mira Ltd)

Read More

Anomaly Detection in the Open World: Normality Shift Detection,...

Dongqi Han (Tsinghua University), Zhiliang Wang (Tsinghua University), Wenqi Chen (Tsinghua University), Kai Wang (Tsinghua University), Rui Yu (Tsinghua University), Su Wang (Tsinghua University), Han Zhang (Tsinghua University), Zhihua Wang (State Grid Shanghai Municipal Electric Power Company), Minghui Jin (State Grid Shanghai Municipal Electric Power Company), Jiahai Yang (Tsinghua University), Xingang Shi (Tsinghua University), Xia…

Read More