Harry W. H. Wong (The Chinese University of Hong Kong), Jack P. K. Ma (The Chinese University of Hong Kong), Hoover H. F. Yin (The Chinese University of Hong Kong), Sherman S. M. Chow (The Chinese University of Hong Kong)

Threshold ECDSA recently regained popularity due to decentralized applications such as DNSSEC and cryptocurrency asset custody. Latest (communication-optimizing) schemes often assume all n or at least n' >= t participating users remain honest throughout the pre-signing phase, essentially degenerating to n'-out-of-n' multiparty signing instead of t-out-of-n threshold signing. When anyone misbehaves, all signers must restart from scratch, rendering prior computation and communication in vain. This hampers the adoption of threshold ECDSA in time-critical situations and confines its use to a small signing committee.

To mitigate such denial-of-service vulnerabilities prevalent in state-of-the-art, we propose a robust threshold ECDSA scheme that achieves the t-out-of-n threshold flexibility "for real" throughout the whole pre-signing and signing phases without assuming an honest majority. Our scheme is desirable when computational resources are scarce and in a decentralized setting where faults are easier to be induced. Our design features 4-round pre-signing, O(n) cheating identification, and self-healing machinery over distributive shares. Prior arts mandate abort after an O(n^2)-cost identification, albeit with 3-round pre-signing (Canetti et al., CCS '20), or O(n) using 6 rounds (Castagnos et al., TCS '23). Empirically, our scheme saves up to ~30% of the communication cost, depending on at which stage the fault occurred.

View More Papers

Smarter Contracts: Detecting Vulnerabilities in Smart Contracts with Deep...

Christoph Sendner (University of Wuerzburg), Huili Chen (University of California San Diego), Hossein Fereidooni (Technische Universität Darmstadt), Lukas Petzi (University of Wuerzburg), Jan König (University of Wuerzburg), Jasper Stang (University of Wuerzburg), Alexandra Dmitrienko (University of Wuerzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt), Farinaz Koushanfar (University of California San Diego)

Read More

Breaking and Fixing Virtual Channels: Domino Attack and Donner

Lukas Aumayr (TU Wien), Pedro Moreno-Sanchez (IMDEA Software Institute), Aniket Kate (Purdue University / Supra), Matteo Maffei (Christian Doppler Laboratory Blockchain Technologies for the Internet of Things / TU Wien)

Read More

Navigating Murky Waters: Automated Browser Feature Testing for Uncovering...

Mir Masood Ali (University of Illinois Chicago), Binoy Chitale (Stony Brook University), Mohammad Ghasemisharif (University of Illinois Chicago), Chris Kanich (University of Illinois Chicago), Nick Nikiforakis (Stony Brook University), Jason Polakis (University of Illinois Chicago)

Read More

WIP: Infrared Laser Reflection Attack Against Traffic Sign Recognition...

Takami Sato (University of California, Irvine), Sri Hrushikesh Varma Bhupathiraju (University of Florida), Michael Clifford (Toyota InfoTech Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More