Wenjie Qu (Huazhong University of Science and Technology), Jinyuan Jia (University of Illinois Urbana-Champaign), Neil Zhenqiang Gong (Duke University)

Encoder as a service is an emerging cloud service. Specifically, a service provider first pre-trains an encoder (i.e., a general-purpose feature extractor) via either supervised learning or self-supervised learning and then deploys it as a cloud service API. A client queries the cloud service API to obtain feature vectors for its training/testing inputs when training/testing its classifier (called downstream classifier). A downstream classifier is vulnerable to adversarial examples, which are testing inputs with carefully crafted perturbation that the downstream classifier misclassifies. Therefore, in safety and security critical applications, a client aims to build a robust downstream classifier and certify its robustness guarantees against adversarial examples.

What APIs should the cloud service provide, such that a client can use any certification method to certify the robustness of its downstream classifier against adversarial examples while minimizing the number of queries to the APIs? How can a service provider pre-train an encoder such that clients can build more certifiably robust downstream classifiers? We aim to answer the two questions in this work. For the first question, we show that the cloud service only needs to provide two APIs, which we carefully design, to enable a client to certify the robustness of its downstream classifier with a minimal number of queries to the APIs. For the second question, we show that an encoder pre-trained using a spectral-norm regularization term enables clients to build more robust downstream classifiers.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 66 ) ) ) [post__not_in] => Array ( [0] => 13223 ) )

Fusion: Efficient and Secure Inference Resilient to Malicious Servers

Caiqin Dong (Jinan University), Jian Weng (Jinan University), Jia-Nan Liu (Jinan University), Yue Zhang (Jinan University), Yao Tong (Guangzhou Fongwell Data Limited Company), Anjia Yang (Jinan University), Yudan Cheng (Jinan University), Shun Hu (Jinan University)

Read More

Focusing on Pinocchio's Nose: A Gradients Scrutinizer to Thwart...

Jiayun Fu (Huazhong University of Science and Technology), Xiaojing Ma (Huazhong University of Science and Technology), Bin B. Zhu (Microsoft Research Asia), Pingyi Hu (Huazhong University of Science and Technology), Ruixin Zhao (Huazhong University of Science and Technology), Yaru Jia (Huazhong University of Science and Technology), Peng Xu (Huazhong University of Science and Technology), Hai…

Read More

Private Certifier Intersection

Bishakh Chandra Ghosh (Indian Institute of Technology Kharagpur), Sikhar Patranabis (IBM Research - India), Dhinakaran Vinayagamurthy (IBM Research - India), Venkatraman Ramakrishna (IBM Research - India), Krishnasuri Narayanam (IBM Research - India), Sandip Chakraborty (Indian Institute of Technology Kharagpur)

Read More

Understanding MPU Usage in Microcontroller-based Systems in the Wild

Wei Zhou, Zhouqi Jiang (School of Cyber Science and Engineering, Huazhong University of Science and Technology), Le Guan (School of Computing, University of Georgia)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)