Qihang Zhou (Institute of Information Engineering, Chinese Academy of Sciences), Wenzhuo Cao (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyberspace Security, University of Chinese Academy of Sciences), Xiaoqi Jia (Institute of Information Engineering, Chinese Academy of Sciences), Peng Liu (The Pennsylvania State University, USA), Shengzhi Zhang (Department of Computer Science, Metropolitan College, Boston University, USA), Jiayun Chen (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyberspace Security, University of Chinese Academy of Sciences), Shaowen Xu (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyberspace Security, University of Chinese Academy of Sciences), Zhenyu Song (Institute of Information Engineering, Chinese Academy of Science)

Containers have become widely adopted in cloud platforms due to their efficient deployment and high resource utilization. However, their weak isolation has always posed a significant security concern. In this paper, we propose RContainer, a novel secure container architecture that protects containers from untrusted operating systems and enforces strong isolation among containers by extending ARM Confidential Computing Architecture (CCA) hardware primitives. RContainer introduces a small, trusted mini-OS that runs alongside the deprivileged OS, responsible for monitoring the control flow between the operating system and containers. Additionally, RContainer uses shim-style isolation, creating an isolated physical address space called con-shim for each container at the kernel layer through the Granule Protection Check mechanism. We have implemented RContainer on ARMv9-A Fixed Virtual Platform and ARMv8 hardware SoC for security analysis and performance evaluation. Experimental results demonstrate that RContainer can significantly enhance container security with a modest performance overhead and a minimal Trusted Computing Base (TCB).

View More Papers

MOBIDOJO: A Virtual Security Combat Platform for 5G Cellular...

Hyunwoo Lee (Ohio State University), Haohuang Wen (Ohio State University), Phillip Porras (SRI), Vinod Yegneswaran (SRI), Ashish Gehani (SRI), Prakhar Sharma (SRI), Zhiqiang Lin (Ohio State University)

Read More

Understanding reCAPTCHAv2 via a Large-Scale Live User Study

Andrew Searles (University of California Irvine), Renascence Tarafder Prapty (University of California Irvine), Gene Tsudik (University of California Irvine)

Read More

CCTAG: Configurable and Combinable Tagged Architecture

Zhanpeng Liu (Peking University), Yi Rong (Tsinghua University), Chenyang Li (Peking University), Wende Tan (Tsinghua University), Yuan Li (Zhongguancun Laboratory), Xinhui Han (Peking University), Songtao Yang (Zhongguancun Laboratory), Chao Zhang (Tsinghua University)

Read More

Probe-Me-Not: Protecting Pre-trained Encoders from Malicious Probing

Ruyi Ding (Northeastern University), Tong Zhou (Northeastern University), Lili Su (Northeastern University), Aidong Adam Ding (Northeastern University), Xiaolin Xu (Northeastern University), Yunsi Fei (Northeastern University)

Read More