Shichen Zhang (Michigan State University), Qijun Wang (Michigan State University), Maolin Gan (Michigan State University), Zhichao Cao (Michigan State University), Huacheng Zeng (Michigan State University)

This paper aims to design and implement a radio device capable of detecting a person's handwriting through a wall. Although there is extensive research on radio frequency (RF) based human activity recognition, this task is particularly challenging due to the textit{through-wall} requirement and the textit{tiny-scale} handwriting movements. To address these challenges, we present RadSee---a 6 GHz frequency modulated continuous wave (FMCW) radar system designed for detecting handwriting content behind a wall. RadSee is realized through a joint hardware and software design. On the hardware side, RadSee features a 6 GHz FMCW radar device equipped with two custom-designed, high-gain patch antennas. These two antennas provide a sufficient link power budget, allowing RadSee to "see'' through most walls with a small transmission power. On the software side, RadSee extracts effective phase features corresponding to the writer's hand movements and employs a bidirectional LSTM (BiLSTM) model with an attention mechanism to classify handwriting letters. As a result, RadSee can detect millimeter-level handwriting movements and recognize most letters based on their unique phase patterns. Additionally, it is resilient to interference from other moving objects and in-band radio devices. We have built a prototype of RadSee and evaluated its performance in various scenarios. Extensive experimental results demonstrate that RadSee achieves 75% letter recognition accuracy when victims write 62 random letters, and 87% word recognition accuracy when they write articles.

View More Papers

What’s Done Is Not What’s Claimed: Detecting and Interpreting...

Chang Yue, Kai Chen, Zhixiu Guo (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Jun Dai, Xiaoyan Sun (Department of Computer Science, Worcester Polytechnic Institute), Yi Yang (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China)

Read More

Privacy-Preserving Data Deduplication for Enhancing Federated Learning of Language...

Aydin Abadi (Newcastle University), Vishnu Asutosh Dasu (Pennsylvania State University), Sumanta Sarkar (University of Warwick)

Read More

Duumviri: Detecting Trackers and Mixed Trackers with a Breakage...

He Shuang (University of Toronto), Lianying Zhao (Carleton University and University of Toronto), David Lie (University of Toronto)

Read More

Eclipse Attacks on Monero's Peer-to-Peer Network

Ruisheng Shi (Beijing University of Posts and Telecommunications), Zhiyuan Peng (Beijing University of Posts and Telecommunications), Lina Lan (Beijing University of Posts and Telecommunications), Yulian Ge (Beijing University of Posts and Telecommunications), Peng Liu (Penn State University), Qin Wang (CSIRO Data61), Juan Wang (Wuhan University)

Read More